精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的通项公式为${a_n}={3^n}$,则$\lim_{n→∞}\frac{{{a_1}+{a_2}+{a_3}+…+{a_n}}}{a_n}$=$\frac{3}{2}$.

分析 利用等比数列的求和公式,结合极限,即可得出结论.

解答 解:$\lim_{n→∞}\frac{{{a_1}+{a_2}+{a_3}+…+{a_n}}}{a_n}$=$\underset{lim}{n→∞}$$\frac{\frac{3(1-{3}^{n})}{1-3}}{{3}^{n}}$=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.

点评 本题考查等比数列的求和公式,考查极限方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,设命题p:椭圆C:$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8-m}$=1的焦点在x轴上:命题q:直线l:x-y+m=0与圆O:x2+y2=9有公共点.若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=aex-x-2a有两个零点,则实数a的取值范围是(  )
A.$({-∞,\frac{1}{e}})$B.$({0,\frac{1}{e}})$C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.若$\frac{1}{a}>\frac{1}{b}$,则a<b
B.若命题$P:?x∈({0,π}),x+\frac{1}{sinx}≤2$,则?P为真命题
C.已知命题p,q,“p为真命题”是“p∧q为真命题”的充要条件
D.若f(x)为R上的偶函数,则$\int_{-1}^1{f(x)dx}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数z满足2$\overline{z}$-1=3+6i(i是虚数单位),则z=2-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=(x-1)2的单调递增区间是(  )
A.[0,+∞)B.[1,+∞)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.0D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率π的值在3.1415926与3.1415927之间,成为世界上第一把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子,在正方形中的80颗豆子中,落在圆内的有64颗,则估算圆周率的值为(  )
A.3.1B.3.14C.3.15D.3.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足(3+4i)z=25,则复平面内表示z的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案