精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}为等比数列,a1=2,公比q>0,且a2,6,a3成等差数列.

(1)求数列{an}的通项公式;

(2)设bn=log2an,求使的n的值.

【答案】(1); (2)n的取值为1,2,3,4,5.

【解析】

(1)由a2,6,a3成等差数列,知12=a2+a3,由{an}为等比数列,且a1=2,故12=2q+2q2,由此能求出数列{an}的通项公式.

(2)由bn=log22n=n,知bnbn+1由此利用裂项求和法能够求出由n的取值.

(1)由a2,6,a3成等差数列,

得12=a2+a3

又{an}为等比数列,且a1=2,

故12=2q+2q2,解得q=2,或q=-3,

又q>0,∴q=2,

,

(2)∵

,

,

故由,得n<6,又n∈N*

∴n的取值为1,2,3,4,5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段的端点的坐标是端点在圆上运动.

求线段的中点的轨迹的方程

设圆与曲线的两交点为求线段的长

)若点在曲线上运动轴上运动的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上的函数满足:①为正常数);②当时,,若的图象上所有极大值对应的点均落在同一条直线上,则___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆与圆关于直线对称.

1)求直线的方程;

2)设圆与圆交于点,点为圆上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合计

100

1.000

(1)求频率分布表中np的值,并估计该组数据的中位数(保留l位小数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,则第345组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合计

100

1.000

(1)求频率分布表中np的值,并估计该组数据的中位数(保留l位小数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,则第345组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为且满足:

(1)证明:是等比数列,并求数列的通项公式.

(2)设,若数列是等差数列,求实数的值;

(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

女员工

16

男员工

14

合计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案