精英家教网 > 高中数学 > 题目详情
19.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.

分析 根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可.

解答 解:设分别生产甲乙两种产品为x桶,y桶,利润为z元
则根据题意可得$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤12}\\{x,y≥0且x,y∈N}\end{array}\right.$,
目标函数z=300x+400y
作出不等式组表示的平面区域,如图所示
作直线L:3x+4y=0,然后把直线向可行域平移,
由图象知当直线经过A时,目标函数z=300x+400y的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x+2y=12}\\{2x+y=12}\end{array}\right.$可得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即A(4,4),
此时z最大z=300×4+400×4=2800,
即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为2800.

点评 本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)为偶函数,点P,Q分别为函数y=f(x)图象上相邻的最高点和最低点,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.求函数f(x)的解析式、周期、值域.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(理)试卷(解析版) 题型:填空题

命题:“”的否定是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x2+mx)ex(其中e为自然对数的底数).
(Ⅰ)当m=-2时,求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)在区间[1,3]上单调递减,求m的取值范围;
(Ⅲ)是否存在实数m,使得f(x)为R上的单调函数?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:
①函数f(x)是偶函数;
②f(f(x))=0;
③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;
④不存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
使得△ABC 为等边三角形.其中为真命题的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(-x2+x-1)ex,其中e是自然对数的底数.
(1)求曲线f(x)在点(1,f(1))处的切线;
(2)若方程f(x)-($\frac{1}{3}$x3+$\frac{1}{2}$x2+m)=0有3个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若用如图的程序框图求数列{$\frac{n+1}{n}$}的前100项和,则赋值框和判断框中可分别填入(  )
A.S=S+$\frac{i+1}{i}$,i≥100?B.S=S+$\frac{i+1}{i}$,i≥101?C.S=S+$\frac{i}{i-1}$,i≥100?D.S=S+$\frac{i}{i-1}$,i≥101?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数y=4cosx-1,x∈[0,$\frac{π}{2}$],此函数的最小值为-1;最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的单位向量,向量$\overrightarrow{c}$满足$\overrightarrow{c}$=λ$\overrightarrow{a}$+(1-λ)$\overrightarrow{b}$,λ∈R,且|$\overrightarrow{c}$|=$\frac{1}{2}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是$\sqrt{3}$.

查看答案和解析>>

同步练习册答案