精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|3x<16,x∈N},B={x|x2-5x+4<0},则A∩(∁RB)=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{x|0<x<1}

分析 先分别求出集合A和B,再求出CRB,由此能求出A∩(∁RB).

解答 解:∵集合A={x|3x<16,x∈N}={0,1,2},
B={x|x2-5x+4<0}={x|1<x<4},
∴CRB={x|x≤1或x≥4},
∴A∩(∁RB)={0,1}.
故选:B.

点评 本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,下列命题正确的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,B.若$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则|$\overrightarrow{a}$|+|$\overrightarrow{b}$|>|$\overrightarrow{c}$|
C.若($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=xlnx-1的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成角的度数是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和抛物线y2=4$\sqrt{3}$x的焦点相同,且椭圆过点(-$\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆方程;
(2)过点(3,0)的直线交椭圆于A、B两点,P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OP}$(λ≠0,O为原点),当|AB|<$\sqrt{3}$时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)可导且下列各极限均存在,则(  )成立.
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,AB=AC,点M在BC上,$4\overrightarrow{BM}=\overrightarrow{BC}$,N是AM的中点,sin∠BAM=$\frac{1}{3}$,AC=2,则$\overrightarrow{AM}•\overrightarrow{CN}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}-1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}}\right.$关于x的方程2[f(x)]2+(1-2m)f(x)-m=0,有5不同的实数解,则m的取值范围是(  )
A.$(-1,\frac{1}{e})$B.(0,+∞)C.$(0,\frac{1}{e})$D.$(0,\frac{1}{e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{an}满足a1=1,且an+1=2an,n∈N*,则a6的值为32.

查看答案和解析>>

同步练习册答案