精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}-1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}}\right.$关于x的方程2[f(x)]2+(1-2m)f(x)-m=0,有5不同的实数解,则m的取值范围是(  )
A.$(-1,\frac{1}{e})$B.(0,+∞)C.$(0,\frac{1}{e})$D.$(0,\frac{1}{e}]$

分析 利用导数研究函数y=$\frac{lnx}{x}$的单调性并求得最值,求解方程2[f(x)]2+(1-2m)f(x)-m=0得到f(x)=m或f(x)=$-\frac{1}{2}$.画出函数图象,数形结合得答案.

解答 解:设y=$\frac{lnx}{x}$,则y′=$\frac{1-lnx}{{x}^{2}}$,
由y′=0,解得x=e,
当x∈(0,e)时,y′>0,函数为增函数,当x∈(e,+∞)时,y′<0,函数为减函数.
∴当x=e时,函数取得极大值也是最大值为f(e)=$\frac{1}{e}$.
方程2[f(x)]2+(1-2m)f(x)-m=0化为[f(x)-m][2f(x)+1]=0.
解得f(x)=m或f(x)=$-\frac{1}{2}$.
如图画出函数图象:
可得m的取值范围是(0,$\frac{1}{e}$).
故选:C.

点评 本题考查根的存在性与根的个数判断,考查利用导数求函数的最值,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.为了了解某校学生一学期内的课外阅读情况,现随机统计了n名学生的课外阅读时间,所得样本数据都在[50,150]内(单位:小时),其频率分布直方图如图所示,若该样本在[125,150]内的频数为100,则n的值为500.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|3x<16,x∈N},B={x|x2-5x+4<0},则A∩(∁RB)=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出以下结论:
(1)直线a∥平面α,直线b?α,则a∥b.
(2)若a?α,b?α,则a、b无公点.       
(3)若a?α,则a∥α或a与α相交 
(4)若a∩α=A,则a?α.
正确的个数为(  )
A.1个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{({b}_{n}+2)}^{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax2-(a+2)x+lnx.若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,则a的取值范围为[0,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{1}{3}{x^3}$-x+c+1有两个不同零点,且有一个零点恰为f(x)的极小值点,则c的值为(  )
A.0B.$-\frac{5}{3}$C.$-\frac{1}{3}$D.$-\frac{5}{3}$或$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知ω>0,函数f(x)=sinωx在区间$[{-\frac{π}{4},\frac{π}{4}}]$上恰有9个零点,则ω的取值范围是(  )
A.16≤ω<20B.16≤ω≤20C.16≤ω<18D.16≤ω≤18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,a,b,c分别为角A,B,C的对边,a=$\sqrt{3}$,b=$\sqrt{2}$,B=45°,则角C的大小为(  )
A.15°B.75°C.15°或75°D.60°或120°

查看答案和解析>>

同步练习册答案