精英家教网 > 高中数学 > 题目详情
1.设f(x)可导且下列各极限均存在,则(  )成立.
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

分析 利用导数的定义,转化判断即可.

解答 解:对于A,不满足导数的定义,不正确;
对于B,$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=2f′(a),所以B能正确;
对于C,$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=-f′(x0),所以C不正确;
对于D,$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0)满足导数的定义,正确;
故选:D.

点评 本题考查导数的定义,极限的运算法则,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,在△ABC中,D为AB的中点,E为CD的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,以向量$\overrightarrow{a}$,$\overrightarrow{b}$为基底,则向量$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,B=135°,C=15°,a=5,则此三角形的最小边长为$\frac{5\sqrt{6}-5\sqrt{2}}{2}$,外接圆的面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知EA⊥平面ABC,FC⊥平面ABC,△ABC是正三角形,D是BC的中点,且AB=AE=1,CF=2.
(1)求证:AD⊥平面BCF;
(2)求直线DF与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|3x<16,x∈N},B={x|x2-5x+4<0},则A∩(∁RB)=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.角α的终边经过点(-6,8),则sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,tanα=-$\frac{4}{3}$,cotα=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出以下结论:
(1)直线a∥平面α,直线b?α,则a∥b.
(2)若a?α,b?α,则a、b无公点.       
(3)若a?α,则a∥α或a与α相交 
(4)若a∩α=A,则a?α.
正确的个数为(  )
A.1个B.4个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax2-(a+2)x+lnx.若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,则a的取值范围为[0,8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sin(θ+$\frac{π}{3}$)=$\frac{5}{13}$,θ∈($\frac{π}{6}$,$\frac{2π}{3}$),则cosθ的值为$\frac{5\sqrt{3}-12}{26}$.

查看答案和解析>>

同步练习册答案