精英家教网 > 高中数学 > 题目详情
2.在△ABC中,B=135°,C=15°,a=5,则此三角形的最小边长为$\frac{5\sqrt{6}-5\sqrt{2}}{2}$,外接圆的面积为25π.

分析 根据题意,由A、C的大小可得B=75°,由三角形的角边关系分析可得c为最小边;进而由正弦定理=,变形可得c=,代入数据计算可得答案.

解答 解:根据题意,在△ABC中,B=135°,C=15°,则A=180°-135°-15°=30°,
则有B>A>C,则c为最小边,
由正弦定理可得:c=$\frac{a•sinC}{sinA}$=$\frac{5×sin15°}{sin30°}$=$\frac{5\sqrt{6}-5\sqrt{2}}{2}$,外接圆的半径R=$\frac{a}{2sinA}$=$\frac{5}{2×\frac{1}{2}}$=5,
可得:外接圆的面积S=πR2=25π.
故答案为:$\frac{5\sqrt{6}-5\sqrt{2}}{2}$,25π.

点评 本题考查正弦定理的运用,注意要先求出A的值,由三角形角边关系分析出最小边,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=AB=2,EF=$\sqrt{2}$,则异面直线AB与PC所成的角为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥$\frac{{-{x^2}+mx-3}}{2}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知平行六面体ABCD-A1B1C1D1的底面ABCD为正方形,且∠A1AB=∠A1AD=60°,则当$\frac{{A}_{1}A}{AB}$=$\frac{\sqrt{17}-1}{4}$时,AC1⊥A1B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=xlnx-1的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.${({\sqrt{x}-\frac{1}{{2\root{4}{x}}}})^8}$的展开式中的有理项共有3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成角的度数是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)可导且下列各极限均存在,则(  )成立.
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中,真命题的个数是.(  )
①命题“若p,则q”的否命题是“若p,则¬q”;
②xy≠10是x≠5或y≠2的充分不必要条件;
③已知命题p,q,若“p∧q”为假命题,则命题p与q一真一假;
④线性相关系数r的绝对值越接近1,表示两个变量的相关性越强.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案