精英家教网 > 高中数学 > 题目详情
1.如图,在△ABC中,D为AB的中点,E为CD的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,以向量$\overrightarrow{a}$,$\overrightarrow{b}$为基底,则向量$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

分析 利用向量的加减法运算法则,化简求解即可.

解答 解:因为E为CD的中点,则$\overrightarrow{AE}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{AC}$).因为D为AB的中点,则$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$.
所以$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,
故选:B.

点评 本题考查向量的四则运算,向量在几何中的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC 中,a2=b2+c2+bc,则A等于(  )
A.60°B.120°C.30°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=AB=2,EF=$\sqrt{2}$,则异面直线AB与PC所成的角为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;\;(b>0)$的离心率为2,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,下列命题正确的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,B.若$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则|$\overrightarrow{a}$|+|$\overrightarrow{b}$|>|$\overrightarrow{c}$|
C.若($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=0,则$\overrightarrow{a}$⊥$\overrightarrow{b}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆C:x2+y2-2x+4y-20=0上有四个不同的点到直线l:4x+3y+c=0的距离为2,则c的取值范围是(  )
A.(-12,8)B.(-8,12)C.(-13,17)D.(-17,13)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥$\frac{{-{x^2}+mx-3}}{2}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知平行六面体ABCD-A1B1C1D1的底面ABCD为正方形,且∠A1AB=∠A1AD=60°,则当$\frac{{A}_{1}A}{AB}$=$\frac{\sqrt{17}-1}{4}$时,AC1⊥A1B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)可导且下列各极限均存在,则(  )成立.
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

查看答案和解析>>

同步练习册答案