精英家教网 > 高中数学 > 题目详情
已知p:?x∈[1,2],x2-a≥0,q:?x0∈R,x02+2ax0+2-a=0,若“p∧q”为真命题,则实数a的取值范围是(  )
A、-2≤a≤1
B、a≤-2或1≤a≤2
C、a≥-1
D、a=1或a≤-2
考点:复合命题的真假
专题:简易逻辑
分析:先根据二次函数的最小值,以及一元二次方程的解的情况和判别式△的关系求出p,q下的a的取值范围,然后根据p∧q为真命题知p,q都是真命题,所以求p,q下a的取值范围的交集即可.
解答: 解:p:?x∈[1,2],x2-a≥0,即:
a≤x2在x∈[1,2]上恒成立;
x2在[1,2]上的最小值为1;
∴a≤1;
q:?x0∈R,x02+2ax0+2-a=0,则:
方程x02+2ax0+2-a=0有解;
∴△=4a2-4(2-a)≥0,解得a≤-2,或a≥1;
若“p∧q”为真命题,则p,q都是真命题;
a≤1
a≤-2,或a≥1

∴a≤-2,或a=1;
故选D.
点评:考查对“?”和“?”两个符号的理解,二次函数最值,以及一元二次方程的解的情况和判别式△的关系,p∧q真假和p,q真假的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )
A、[2,
7
3
]
B、[
7
3
,3]
C、[2,3]
D、[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3•log2(4x),
1
4
≤x≤4;
(1)若t=log2x,求t取值范围;
(2)求f(x)的最值,并给出最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,△ABC顶点坐标分别为A(0,0),B(1,
3
),C(m,0).若△ABC是钝角三角形,则正实数m的取值范围是(  )
A、0<m<1
B、0<m<
3
C、0<m<
3
或m>4
D、0<m<1或m>4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-4x-6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(α)=4
2
sin(2α-
π
4
)+2,在锐角三角形ABC中,A、B、C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+a•2-x,且对于任意的x,有f(-x)+f(x)=0,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0
(1)若a=1,且q∧p为真,求实数x的取值范围;
(2)若p是q必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个数0.89,90.8,log0.89的大小关系为(  )
A、log0.89<0.89<90.8
B、0.89<90.8<log0.89
C、log0.89<90.8<0.89
D、0.89<log0.89<90.8

查看答案和解析>>

同步练习册答案