精英家教网 > 高中数学 > 题目详情
对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )
A、[2,
7
3
]
B、[
7
3
,3]
C、[2,3]
D、[2,4]
考点:函数零点的判定定理
专题:函数的性质及应用
分析:先得出函数f(x)=ex-1+x-2的零点为x=1.再设g(x)=x2-ax-a+3的零点为β,根据函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,及新定义的零点关联函数,有|1-β|≤1,从而得出g(x)=x2-ax-a+3的零点所在的范围,最后利用数形结合法求解即可.
解答: 解:函数f(x)=ex-1+x-2的零点为x=1.
设g(x)=x2-ax-a+3的零点为β,
若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,
根据零点关联函数,则|1-β|≤1,
∴0≤β≤2,如图.
由于g(x)=x2-ax-a+3必过点A(-1,4),
故要使其零点在区间[0,2]上,则
g(0)≥0
g(
a
2
)≤0

-a+3≥0
(
a
2
)2-a×
a
2
+3≤0

解得2≤a≤3,
故选:C.
点评:本题主要考查了函数的零点,考查了新定义,主要采用了转化为判断函数的图象的零点的取值范围问题,解题中注意体会数形结合思想与转化思想在解题中的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示:则该几何体的外接球表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线
x=3+4t
y=4-5t
(t为参数)的斜率为(  )
A、
4
5
B、-
4
5
C、
5
4
D、-
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,-1),
b
=(1,-2),则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=x+b被圆x2+y2=1所截得的弦长不小于1,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x、y满足
2x-y≤0
x-3y+5≥0
,则z=3-y(
1
3
)2x
的最小值为(  )
A、
1
9
B、
1
27
C、
1
81
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x-2y+6>0表示的区域在直线x-2y+6=0的(  )
A、右上方B、右下方
C、左上方D、左下方

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△Sn+an=2n中,内角A,B,C的对边分别是a,b,c,且a=3,C=60°,△ABC的面积等于
3
3
2
,求边长b和c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈[1,2],x2-a≥0,q:?x0∈R,x02+2ax0+2-a=0,若“p∧q”为真命题,则实数a的取值范围是(  )
A、-2≤a≤1
B、a≤-2或1≤a≤2
C、a≥-1
D、a=1或a≤-2

查看答案和解析>>

同步练习册答案