精英家教网 > 高中数学 > 题目详情
15.${π^0}+{4^{-\frac{1}{2}}}+cosπ$=$\frac{1}{2}$,log39-lg2•log210=1.

分析 直接利用指数的运算法则化简求解第一问;利用对数运算法则求解第二问.

解答 解:${π^0}+{4^{-\frac{1}{2}}}+cosπ$=1+$\frac{1}{2}-1$=$\frac{1}{2}$;
log39-lg2•log210=2-lg2•$\frac{1}{lg2}$=2-1=1.
故答案为:$\frac{1}{2}$,1.

点评 本题考查对数运算法则指数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{2}$,则直线l:y=$\frac{2016}{2015}$x与双曲线C的交点个数为(  )
A.0B.2C.4D.以上都可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(  )
A.20πB.$\frac{{20\sqrt{5}π}}{3}$C.D.$\frac{{5\sqrt{5}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}x+1(x≤1)\\ \sqrt{x}(x>1).\end{array}\right.$若f(x)>f(x+1),则x的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右支上第一象限内的一点,其右焦点为F2,若直线PF2的斜率为$\sqrt{3}$,M为线段PF2的中点,且|OF2|=|F2M|,则该双曲线的离心率为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,已知△ABC的顶点B、C恰好是双曲线M:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦点,且顶点A在双曲线M的右支上,则$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b是不相等的两个正数,且blna-alnb=a-b,给出下列结论:①a+b-ab>1;②a+b>2;③$\frac{1}{a}$+$\frac{1}{b}$>2.其中所有正确结论的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{-{x}^{2}-2x,x≤0}\\{\;}\end{array}\right.$,则不等式f(x)≤0的解集为{x|x≥1或x=0或x≤-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设α、β、γ是不同的平面,m,n是不同的直线,则由下列条件能得出m⊥β的是(  )
A.n⊥α,n⊥β,m⊥αB.α∩β=m,α⊥β,β⊥γC.m⊥n,n?βD.α⊥β,α∩β=n,m⊥n

查看答案和解析>>

同步练习册答案