| A. | 2 | B. | $\frac{1}{2}$ | C. | 0 | D. | -$\frac{1}{2}$ |
分析 由$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{2}{{n}^{2}+n}$,可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$,利用裂项求和方法可得an.再利用等差数列的求和公式与二次函数的单调性即可得出.
解答 解:∵$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{2}{{n}^{2}+n}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{a}_{n}}$=$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})$+$(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})$+…+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})$+$\frac{1}{{a}_{1}}$
=2$[(\frac{1}{n-1}-\frac{1}{n})$+$(\frac{1}{n-2}-\frac{1}{n-1})$+…+$(1-\frac{1}{2})]$-2
=-$\frac{2}{n}$,
∴an=-$\frac{n}{2}$.
∴数列{an}的前n项和Sn=-$\frac{1}{2}×\frac{n(n+1)}{2}$=-$\frac{1}{4}$$(n+\frac{1}{2})^{2}$+$\frac{1}{16}$.
∴n=1时,Sn取得最大值为-$\frac{1}{2}$.
故选:D.
点评 本题考查了裂项求和方法、等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,3} | C. | {1,2,3} | D. | {1,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com