精英家教网 > 高中数学 > 题目详情
14.已知等差数列{an}的前三项分别为λ,6,3λ,前n项和为Sn,且Sk=165.
(1)求λ及k的值;
(2)设bn=$\frac{3}{2Sn}$,且数列{bn}的前n项和Tn,证明:$\frac{1}{2}$≤Tn<1.

分析 (1)由λ,6,3λ成等差数列,可得λ+3λ=12,解得λ,再利用求和公式即可得出.
(2)bn=$\frac{3}{2{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用裂项求和方法与数列的单调性即可证明.

解答 (1)解:∵λ,6,3λ成等差数列,∴λ+3λ=12,∴λ=3.(2分)
∴等差数列{an}的首项a1=3,公差d=3,(3分)
故前n项和Sn=$3n+\frac{n(n-1)}{2}$×3=$\frac{3{n}^{2}+3n}{2}$,
由Sk=165,即$\frac{3{k}^{2}+3k}{2}$=165,解得k=10.(6分)
(2)证明:∵bn=$\frac{3}{2{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,(8分)
∴T=b1+b2+…+bn=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.(10分)
由于Tn=$\frac{n}{n+1}$是关于n的增函数,故Tn≥T1=$\frac{1}{2}$,所以$\frac{1}{2}$≤Tn<1.(12分)

点评 本题考查了等差数列的通项公式与求和公式、裂项求和方法与数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.双曲线3x2-y2=9的焦距为(  )
A.$\sqrt{6}$B.2$\sqrt{6}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an},满足a1=-$\frac{1}{2}$,$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{2}{{n}^{2}+n}$,则数列{an}的前n项和的最大值为(  )
A.2B.$\frac{1}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l是函数f(x)=2lnx+x2图象的切线,当l的斜率最小时,直线l的方程是(  )
A.4x-y+3=0B.4x-y-3=0C.4x+y+3=0D.4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知动点A,B在椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1上,且线段AB的垂直平分线始终过点P(-1,0).
(1)证明线段AB的中点M在定直线上;
(2)求线段AB长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=-x2+x(x∈[0,1])图象绕点(1,0)顺时针旋转θ角(0<θ<$\frac{π}{2}$)得到曲线C,若曲线C仍是一个函数的图象,则θ的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列结论正确的是①④.
①(x2-4)(x+$\frac{1}{x}$)9的展开式中x3的系数为-210;
②在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;
③已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题;
④不等式ax2-(2a-3)x-1>0对?x>1恒成立的充要条件是0≤a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若将函数y=sin(2x+φ)图象向右平移$\frac{π}{8}$个单位长度后关于y轴对称,则φ的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若等边△ABC的边长为3,平面内一点M满足$\overrightarrow{CM}=\frac{1}{3}\overrightarrow{CB}+\frac{1}{2}\overrightarrow{CA}$,则$\overrightarrow{AM}•\overrightarrow{MB}$的值为2.

查看答案和解析>>

同步练习册答案