| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
分析 确定函数在x=1处,函数图象的切线斜率,可得倾斜角,从而可得角θ的 最大值.
解答 解:由题意,函数图象如图所示,函数在[0,$\frac{1}{2}$]上为增函数,在[$\frac{1}{2}$,1]上为减函数.
设函数在x=1处,切线斜率为k,则k=f'(1)
∵f'(x)=-2x+1,
∴∴k=f'(1)=-1,可得切线的倾斜角为135°,
因此,要使旋转后的图象仍为一个函数的图象,旋转θ后的切线倾斜角最多为 90°,也就是说,最大旋转角为135°-90°=45°,即θ的最大值为45°即$\frac{π}{4}$.
故选:B
.
点评 本题考查了导数的几何意义和函数的图象与图象变化等知识点,将函数图象绕原点逆时针旋转θ后,所得曲线仍是一个函数的图象,求角θ的最大值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com