精英家教网 > 高中数学 > 题目详情
9.某厂生产一种供不应求产品时,每年需投入固定成本250万元,每生产此产品x千件还需另投入C(x)=51x$+\frac{10000}{x}$-1450万元,已知此产品每千件产品的售价为50万元
(1)设该产品的年利润为L(x)(万元),求年利润L(x)的函数式
(2)当年产量为多少千件时,该厂在这一产品的生产销售中所获年利润最大.

分析 (1)利用题意建立方程,能求出该产品的年利润的函数式.
(2)L(x)=1200-(x+$\frac{10000}{x}$)≤1200-2$\sqrt{x•\frac{10000}{x}}$=1200-200=1000万元,由此能求出当年产量为100千件时年利润最大,年利润最大值为1000万元.

解答 解:(1)该产品的年利润为L(x)(万元),
年利润L(x)=50x-51x-$\frac{10000}{x}$+1450-250=1200-(x+$\frac{10000}{x}$),x>0.
(2)L(x)=1200-(x+$\frac{10000}{x}$)≤1200-2$\sqrt{x•\frac{10000}{x}}$=1200-200=1000万元,
当x=$\frac{10000}{x}$,即x=100时等号成立,
∴当年产量为100千件时年利润最大,年利润最大值为1000万元.

点评 本题考查函数式的求法,考查年利润的最大值的求法,考查函数、均值不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+a|+x(a∈R)
(Ⅰ)当a=-2时,求不等式f(x)≤2x+1的解集
(Ⅱ)已知不等式f(x)≤|x+3|(x>0)的解集为D,且[1,2]⊆D,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx+$\frac{1}{2}$,g(x)=mcos(x+$\frac{π}{3}$)-m+2
(1)若对任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围;
(2)若对任意的x∈[0,π],均有f(x)≥g(x),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从装有6个白球和4个红球的口袋中任取一个球,用ξ表示“取到的白球个数”,即$\left\{\begin{array}{l}{1,当取到白球时}\\{0,当取到红球时}\end{array}\right.$,则Dξ=0.24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线3x2-y2=9的焦距为(  )
A.$\sqrt{6}$B.2$\sqrt{6}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}(n∈N*),a2=-9.
(1)若数列{an}是等比数列,且a5=-$\frac{1}{3}$,求数列{an}的通项公式;
(2)若数列{an}是等差数列,且a6=-1,数列{bn}满足bn=2${\;}^{{a}_{n}}$,当b1b2…bm=1(m∈N*)时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙是一对乒乓球双打运动员,在5次训练中,对他们的表现进行评价,得分如图所示:
第1次第2次第3次第4次第5次
甲(x)8991939597
乙(y)8789899293
(1)求乙分数y的标准差S;
(2)根据表中数据,求乙分数y对甲分数x的回归方程;
( 附:回归方程y=bx+a中,a=$\overline{y}$-$\overline{bx}$,b=$\frac{\sum_{1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{1}^{n}({x}_{i}-\overline{x})^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow b$|=4,$(\overrightarrow a+2\overrightarrow b)•(\overrightarrow a-3\overrightarrow b)=-72$,则向量|$\overrightarrow a$|=(  )
A.6B.4C.2D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数y=-x2+x(x∈[0,1])图象绕点(1,0)顺时针旋转θ角(0<θ<$\frac{π}{2}$)得到曲线C,若曲线C仍是一个函数的图象,则θ的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

同步练习册答案