精英家教网 > 高中数学 > 题目详情
8.学校5月1号至5月3号拟安排6位老师值班,要求每人值班1天,每天安排2人,若6位老师中,甲不能值2号,乙不能值3号,则不同的安排值班方法数为42.

分析 根据题意,分2种情况讨论:①、若甲乙同组,则甲乙只能安排在5月1号,②、若甲乙不同组,需要在4人中任选一人与甲同组,在剩下3人中选取1人与乙同组,分类讨论可得此时的安排方法数目,由加法原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、若甲乙同组,则甲乙只能安排在5月1号,此时在剩下的4人中任选2人安排在5月2号,最后2人安排在5月3号即可,
有C42=6种安排方法;
②、若甲乙不同组,需要在4人中任选一人与甲同组,在剩下3人中选取1人与乙同组,有C41C31=12种情况,最后2人组成1组,
若甲所在的组分在5月3号,则乙所在的组有2种情况,最后2人组成的1组有1种情况,此时有2种情况,
若甲所在的组分在5月1号,则乙所在的组有1种情况,最后2人组成的1组有1种情况,此时有2种情况,
则此时有12×(2+1)=36种安排方法;
则不同的安排值班方法数为6+36=42种;
故答案为:42.

点评 本题考查了分类加法计数原理,关键是对题意的理解,解答该类问题一定要避免重复或遗漏,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将函数y=-x2+x(x∈[0,1])图象绕点(1,0)顺时针旋转θ角(0<θ<$\frac{π}{2}$)得到曲线C,若曲线C仍是一个函数的图象,则θ的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C:x2+y2-2x-4y+m=0.
(1)若m=1,过点(-2,3)的直线l交曲线C于M,N两点,且|MN|=2$\sqrt{3}$,求直线l的方程;
(2)若曲线C表示圆,且直线x-y-1=0与圆C交于A,B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$|\overrightarrow a|=1,|\overrightarrow b|=2,\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,那么$|4\overrightarrow a-\overrightarrow b|$=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若等边△ABC的边长为3,平面内一点M满足$\overrightarrow{CM}=\frac{1}{3}\overrightarrow{CB}+\frac{1}{2}\overrightarrow{CA}$,则$\overrightarrow{AM}•\overrightarrow{MB}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于数列{xn},若对任意n∈N*,都有xn+2-xn+1<xn+1-xn成立,则称数列{xn}为“减差数列”.设${b_n}=2t-\frac{{t{n^2}-n}}{{{2^{n-1}}}}$,若数列${b_5},{b_6},{b_7},…,{b_n}({n≥5,n∈{N^*}})$是“减差数列”,则实数t的取值范围是(  )
A.$({0,\frac{3}{5}})$B.$({0,\frac{3}{5}}]$C.$({\frac{3}{5},+∞})$D.$[{\frac{3}{5},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(x,x+1),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}$$⊥\overrightarrow{b}$,则实数x的值等于-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若随机变量X的分布列如表,则a2+b2的最小值为(  )
X012
P$\frac{1}{3}$ab
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{3}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.cos(-$\frac{16π}{3}$)的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案