分析 由题意画出图形,由|QF|=2求出|AB|的长度,联立过焦点的直线方程与抛物线方程,由弦长公式求出弦长,则p的值可求.
解答 解:如图,![]()
由抛物线的几何性质可得,以AB为直径的圆与准线l相切,且切点为Q,
△MFN是以∠MFN为直角的直角三角形,
则|MN|=2|QF|=4,即|BD|=4,∴|AB|=$\frac{|BD|}{sin60°}=\frac{4}{\frac{\sqrt{3}}{2}}=\frac{8\sqrt{3}}{3}$,
设A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{{y}^{2}=2px}\\{y-0=\sqrt{3}(x-\frac{p}{2})}\end{array}\right.$,得12x2-20px+3p=0.
则${x}_{1}+{x}_{2}=\frac{20}{12}p=\frac{5}{3}p$,
∴|AB|=${x}_{1}+{x}_{2}+p=\frac{5}{3}p+p=\frac{8}{3}p$,
∴$\frac{8}{3}p=\frac{8\sqrt{3}}{3}$,则p=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查了抛物线的简单几何性质,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{π}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $±\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{3}{4}x$ | B. | y=±$\frac{4}{3}x$ | C. | y=±$\frac{3}{5}x$ | D. | y=±$\frac{5}{4}x$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com