精英家教网 > 高中数学 > 题目详情
设f(x)是定义在实数集R上的偶函数,且满足f(x-1)=-f(x),则方程f(x)=0在区间[-2,2]内至少有(  )个解.
A、3B、4C、5D、9
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:f(x)是定义在实数集R上的偶函数,可得f(x-1)=f(1-x),f(1-x)+f(x)=0.因此f(x)的图象关于(
1
2
,0)
中心对称,关于(-
1
2
,0)
也中心对称.即可得出f(
1
2
)
=0=f(-
1
2
)
.f(
3
2
)
=-f(
3
2
-1)
=-f(
1
2
)
=0=f(-
3
2
)
解答: 解:∵f(x)是定义在实数集R上的偶函数,
∴f(x-1)=f(1-x),其图象关于y轴对称.
∵f(x-1)=-f(x),∴f(1-x)+f(x)=0.
∴f(x)的图象关于(
1
2
,0)
中心对称,关于(-
1
2
,0)
也中心对称.
f(
1
2
-1)=f(-
1
2
)=f(
1
2
)=-f(
1
2
)

f(
1
2
)
=0,
f(-
1
2
)
=0.
f(
3
2
)
=-f(
3
2
-1)
=-f(
1
2
)
=0=f(-
3
2
)

因此方程f(x)=0在区间[-2,2]内至少有4个解.
故选:B.
点评:本题考查了函数的奇偶性、中心对称,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)是二次函数,且f′(x)=0的两根为0和2,若函数f(x)在开区间(2m-3,
m2+2
2
)上存在最大值和最小值,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程|x2-6x+8|=1实根的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lgx-
1
2
x2+1(x>0),则f(x)(  )
A、在区间(0,1)和(1,2)内均没有零点
B、在区间(0,1)内没有零点,而在区间(1,2)内有零点
C、在区间(1,2)内没有零点,而在区间(0,1)内有零点
D、在区间(0,1)和(1,2)内均有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中,正确的命题为(  )
A、|
a
|-|
b
|<|
a
+
b
|是
a
b
不共线的充要条件
B、(
a
b
)•
c
=
b
•(
a
b
)=(
b
c
)•
a
C、向量
a
在向量
b
方向上的射影向量的模为|
a
|•cos<
a
b
D、在四面体ABCD中,若
AB
CD
=0,
AC
BD
=0,则
AD
BC
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
i15
(i为虚数单位)的值为(  )
A、iB、1C、-iD、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2+6x-4y=0和x2+y2-6x+12y-19=0的位置关系是(  )
A、外切B、内切C、相交D、外离

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:P是平行四边形ABCD平面外一点,设M,N分别是PA,BD上的中点,求证:MN∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三棱柱的底面是正三角形,侧棱 垂直于底面,它的三视图如图所示.
(1)请画出它的直观图;
(2)求这个三棱柱的表面积和体积.

查看答案和解析>>

同步练习册答案