精英家教网 > 高中数学 > 题目详情
9.已知圆x2+y2=10,则以点P(1,1)为中点的弦所在直线方程为(  )
A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=0

分析 求出kOP=1,即可求出以点P(1,1)为中点的弦所在直线方程.

解答 解:x2+y2=10的圆心为(0,0),则kOP=1,
∴以点P(1,1)为中点的弦所在直线方程为y-1=-(x-1),即x+y-2=0.
故选A.

点评 本题考查轨迹方程,求出kOP=1是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.指数函数y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图所示,则a,b,c,d与1的大小关系为(  )
A.0<a<b<1<c<dB.0<a<b<1<d<cC.1<a<b<c<dD.0<b<a<1<d<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow b$|=(  )
A.5B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数g(x)=x2-2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)当m=-12时,求f(x)的极小值;
(3)若函数y=g(x)在x∈($\frac{1}{4}$,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}-{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.中心在原点,一焦点为${F_1}(0,-5\sqrt{2})$的椭圆截直线y=3x-2所得弦的中点的横坐标为$\frac{1}{2}$,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.若直线AB的倾斜角α∈(0,$\frac{π}{3}$),则e的取值范围是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=4x2-kx-8在[2,10]上具有单调性,则k的取值范围是(  )
A.(-∞,-80]∪[-16,+∞)B.[-80,-16]C.(-∞,16]∪[80,+∞)D.[16,80]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若幂函数f(x)的图象经过点(3,9),那么函数f(x)的单调增区间是(  )
A.[3,+∞)B.[0,+∞)C.(-∞,0]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

同步练习册答案