精英家教网 > 高中数学 > 题目详情
已知α为锐角,且tan(π-α)+3=0,则sinα的值是(  )
A、
1
3
B、
3
10
10
C、
3
7
7
D、
3
5
5
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:已知等式利用诱导公式变形,求出tanα的值,根据α为锐角,求出cosα的值,即可求出sinα的值.
解答: 解:∵α为锐角,且tan(π-α)+3=-tanα+3=0,即tanα=3,
∴cosα=
1
1+tan2α
=
10
10

则sinα=
1-cos2α
=
3
10
10

故选:B.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
  (ⅰ)证明:k•kON为定值;
  (ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,假命题为(  )
A、?x∈R,x2+x+1>0
B、存在四边相等的四边形不是正方形
C、若x,y∈R,且x+y>2,则x,y至少有一个大于1
D、a+b=0的充要条件是
a
b
=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,则输出的结果S为(  )
A、1007B、1008
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

若α∈(
π
2
,π),且3cos2α=sin(
π
4
-α),则sin2α的值为(  )
A、
1
18
B、-
1
18
C、
17
18
D、-
17
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx(b∈R),则下列结论正确的是(  )
A、?b∈R,f(x)在(0,+∞)上是增函数
B、?b∈R,f(x)在(0,+∞)上是减函数
C、?b∈R,f(x)为奇函数
D、?b∈R,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a
2
x2
(Ⅰ)当a=2时,求曲线y=f(x)在点P(3,f(3))处的切线方程;
(Ⅱ)若函数f(x)与g(x)=
1
2
x2-ax+
a2
2
的图象有三个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右顶点,点D(1,
3
2
)
在椭圆C上,且直线DA与直线DB的斜率之积为-
b2
4

(1)求椭圆C的标准方程;
(2)点P为椭圆C上除长轴端点外的任一点,直线AP,PB与椭圆的右准线分别交于点M,N.
①在x轴上是否存在一个定点E,使得EM⊥EN?若存在,求点E的坐标;若不存在,说明理由;
②已知常数λ>0,求
PM
PN
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x的焦点为F,过点F的直线l交抛物线C于点P,Q.
(Ⅰ)若|PF|=3(点P在第一象限),求直线l的方程;
(Ⅱ)求证:
OP
OQ
为定值(点O为坐标原点).

查看答案和解析>>

同步练习册答案