精英家教网 > 高中数学 > 题目详情
4.已知AB过⊙O的圆心,E为圆外的一点,ED为⊙O的一条切线,且D为切点,EA为⊙O的一条割线,且交⊙O于C,sin∠AED=1
(1)求证:AC∥OD;
(2)若5AC-3AB=0,证明:AF=$\frac{8}{5}$FD.

分析 (1)利用圆的切线的性质,即可证明AC∥OD;
(2)不妨设AC=3,AB=5,连接BC,则BC⊥AC,BC∥ED,求出ED,即可证明:AF=$\frac{8}{5}$FD.

解答 证明:(1)∵ED为⊙O的一条切线,且D为切点,
∴ED⊥OD,
∵sin∠AED=1,
∴ED⊥AE,
∴AC∥OD;
(2)不妨设AC=3,AB=5,连接BC,则BC⊥AC,BC∥ED,
∴四边形ECGD为矩形,CG=ED=2,
由切割线定理可得,ED2=EC•EA,
∴22=ED•(ED+3),
∴ED=1,
∴AE=4,
∵AC∥OD,
∴$\frac{AF}{FD}$=$\frac{AE}{OD}$=$\frac{8}{5}$,
∴AF=$\frac{8}{5}$FD.

点评 本题考查圆的切线的性质,考查切割线定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知某正三棱锥的三视图如图所示,则该三棱锥的表面积为(  )
A.9$\sqrt{3}$B.9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为直线的倾斜角).
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C有公共点,求角α的正切值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ=$\frac{3}{2-cosθ}$,θ∈[0,2π),直线l$\left\{\begin{array}{l}x=3+t\\ y=2+2t\end{array}\right.(t$为参数,t∈R)
(1)求曲线C和直线l的普通方程;
(2)设直线l和曲线C交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)(x∈R)导函数为f′(x),f(0)=2,且f(x)+f′(x)>1,则不等式exf(x)>ex+1的解集为(  )
A.{x|x>0}B.{x|x<0}C.{x|x<-1或0<x<1}D.{x|x<-1或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,x≥0}\\{x•lo{g}_{2}|x|,x<0}\end{array}\right.$,则f(f(-$\frac{1}{2}$))=$\frac{13}{4}$,若f(x)=ax-1有三个零点,则a的取值范围是a>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在(-∞,+∞)内可导,且恒有f′(x)>0,则下列结论正确的是(  )
A.f(x)在R上单调递增B.f(x)在R上是常数C.f(x)在R上不单调D.f(x)在R上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的导函数f′(x)满足f′(x)>0,对x∈D成立,则f(x)在D上单调递增.因为g′(x)=2x,当x>0时,g′(x)>0,所以g(x)在(0,+∞)上单调递增.上述推理用的是(  )
A.归纳推理B.合情推理C.演绎推理D.类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a、b∈R,且a≠1,若奇函数f(x)=lg$\frac{1+ax}{1+x}$在区间(-b,b)上有定义.
(1)求a的值;
(2)求b的取值范围;
(3)求解不等式f(x)>0.

查看答案和解析>>

同步练习册答案