精英家教网 > 高中数学 > 题目详情
4.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f(x),a=e3f(2),b=e2f(3),则a,b的大小关系是(  )
A.a>bB.a<bC.a=bD.无法确定

分析 构造新函数$g(x)=\frac{{e}^{5}f(x)}{{e}^{x}}$,研究其单调性即可.

解答 解:令g(x)=f(x)•e5-x
则$g(x)=\frac{{e}^{5}f(x)}{{e}^{x}}$,
$g′(x)=\frac{{e}^{5}[f′(x){e}^{x}-f(x){e}^{x}]}{{e}^{2x}}$
=$\frac{{e}^{5}[f′(x)-f(x)]}{{e}^{x}}$
对任意的x≥0,f′(x)>f(x),ex>0,
∴g′(x)>0,即g(x)在定义域上是增函数,
∴g(2)<g(3)
故答案选:B

点评 本题考查函数的单调性,构造新函数是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位奇数共有(  )
A.288个B.144个C.240个D.126个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,双曲线两渐近线分别为l1,l2,过点F作直线11的垂线,分别交l1l2于A,B两点,若A,B两点均在x轴的上方且|0A|=3,|OB|=5,则双曲线的离心率为$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过直线1:x+y=2上任意点P向圆C:x2+y2=1作两条切线,切点分别为A,B,线段AB的中点为Q,则点Q到直线1的距离的取值范围为$[\frac{\sqrt{2}}{2},\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={x|lnx≥0},B={x|x2<9},则A∩B=(  )
A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数z1对应的点与复数z2=$\frac{3+2i}{i}$(i为虚数单位)对应的点关于虚轴对称,则z1等于(  )
A.-2-3iB.-2+3iC.2-3iD.2+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知条件p:函数f(x)=x2-ax+4有零点;条件q:函数g(x)=2x2+ax+4在[3,+∞)上是增函数.若条件p,q中有且只有一个成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角θ的终边在直线y=-2x上,则tan(-$\frac{π}{4}$+θ)-5cos2θ=(  )
A.3B.6C.-3D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是一蜘蛛的辛勤劳动成果,已知该蜘蛛网从内到外由一系列嵌套的正六边形组成,其中最内部的正六边形的边长为a且从内至外正六边形的边长满足数量关系a,2a,3a,4a,…,其中最内部正六边形区域被称为“死亡区域”,只要猎物进入该区域则一定会被捕获,现在有一只蜜蜂飞向该蜘蛛网且其通过该蜘蛛网的最大范围不会超过从内至外的第三个正六边形,则猎物一定会被捕获的概率为$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案