精英家教网 > 高中数学 > 题目详情
14.如图是一蜘蛛的辛勤劳动成果,已知该蜘蛛网从内到外由一系列嵌套的正六边形组成,其中最内部的正六边形的边长为a且从内至外正六边形的边长满足数量关系a,2a,3a,4a,…,其中最内部正六边形区域被称为“死亡区域”,只要猎物进入该区域则一定会被捕获,现在有一只蜜蜂飞向该蜘蛛网且其通过该蜘蛛网的最大范围不会超过从内至外的第三个正六边形,则猎物一定会被捕获的概率为$\frac{1}{9}$.

分析 根据相似多边形的面积等于相似比平方,故最内部正六边形是从内至外的第三个正六边形面积的$\frac{1}{9}$,利用几何概型求概率

解答 解:根据相似多边形的面积等于相似比平方,故最内部正六边形是从内至外的第三个正六边形面积的$\frac{1}{9}$,
故猎物一定会被捕获的概率为$\frac{1}{9}$,
故答案为:$\frac{1}{9}$.

点评 本题考查了几何概型概率的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f(x),a=e3f(2),b=e2f(3),则a,b的大小关系是(  )
A.a>bB.a<bC.a=bD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn.已知a1=2,Sn+1=4an+2.
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,已知cosA=$\frac{\sqrt{2}}{2}$,sinB=$\frac{\sqrt{3}}{3}$,则sinC=$\frac{\sqrt{6}+2\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列椭圆的长轴长、短轴长、焦距、离心率、焦点坐标与顶点坐标,并画出图形:
(1)$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1;
(2)y2=5-5x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=Asin(ωx+θ)+b的图象如图所示,则此函数的解析式为y=y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若lgsinA+lgsinB=2lgcos$\frac{C}{2}$,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$∥$\overrightarrow{a}$,向量$\overrightarrow{b}$的起点为A(1,2),终点B在坐标轴上,则点B的坐标为($\frac{7}{3}$,0)或(0,$\frac{7}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭,如果函数f(x)=$\frac{kx}{1+{x}^{2}}$(k≠0)在R上封闭,那么实数k的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

同步练习册答案