精英家教网 > 高中数学 > 题目详情
已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.
(1)求的值及函数的极值;(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当,恒有.
(1),极小值为无极大值;(2)证明见解析;(3)证明见解析.

试题分析:
解题思路:(1)利用导数的几何意义求,再进一步求极值;(2)构造函数,即证
(3)结合(2)的结论,对进行分类讨论.
规律总结:这是一道典型的导函数问题,综合性较强,要求我们要有牢固的基础知识(包括函数的性质、常见解题方法、数形结合等).
试题解析:解法一:(1)由,得.又,得.所以.令,得.当时, 单调递减;当时, 单调递增.所以当时, 取得极小值,且极小值为无极大值.
(2)令,则.由(1)得,故在R上单调递增,又,因此,当时, ,即.
(3)①若,则.又由(2)知,当时, .所以当时, .取,当时,恒有.
②若,令,要使不等式成立,只要成立.而要使成立,则只要,只要成立.令,则.所以当时, 内单调递增.取,所以内单调递增.又.易知.所以.即存在,当时,恒有.
综上,对任意给定的正数c,总存在,当时,恒有.
解法二:(1)同解法一
(2)同解法一
(3)对任意给定的正数c,取
由(2)知,当x>0时,,所以
时,
因此,对任意给定的正数c,总存在,当时,恒有.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的极大值;
(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;
(3)设,当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若处取得极值,求的单调递增区间;
(2)若在区间内有极大值和极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某物体的运动方程是s(t)=-t2+20t+5(其中s的单位是米,t的单位是秒),则物体在t=2秒时的速度为______米/秒.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的导函数,,且函数的图象过点
(1)求函数的表达式;
(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为可导函数,且满足,则过曲线上点处的切线率为
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则在区间上的平均变化率是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的值为____        . 

查看答案和解析>>

同步练习册答案