精英家教网 > 高中数学 > 题目详情

已知函数,其中为常数.
(1)当时,求函数的单调递增区间;
(2)若任取,求函数上是增函数的概率.

(Ⅰ)函数的单调递增区间分别为;(Ⅱ)函数上是增函数的概率为

解析试题分析:(Ⅰ)求函数的单调递增区间,首先将代入,我们易求出函数的解析式,从而求出函数的导函数后,令导函数的函数值大于等于0,由此构造关于的不等式,解不等式即可得到函数的单调递增区间;(Ⅱ)求函数上是增函数的概率,这是一个几何概型问题,我们可以先画出,对应的平面区域的面积,然后再求出满足条件函数上是增函数时对应的平面区域的面积,计算出对应的面积后,代入几何概型公式即可得到答案.
试题解析:(1)当时, 
,解得
故函数的单调递增区间分别为 
(2)
若函数上是增函数,则对于任意恒成立.
所以,,即           8分
设“上是增函数”为事件,则事件对应的区域为

全部试验结果构成的区域
所以,
故函数上是增函数的概率为 
考点:利用导数研究函数的单调性;几何概型;概率的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b为常数,a¹0,函数
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若,在区间恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)当时,求函数的单调增区间;
(2)求函数在区间上的最小值;
(3)在(1)的条件下,设=+
求证:  (),参考数据:。(13分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:;(Ⅱ)求的最小值,并指出此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).

(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设

(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的极大值和极小值;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案