【题目】已知两定点,满足条件的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A,B两点,
(1)求k的取值范围;
(2)如果,且曲线E上存在点C,使,求m的值和的面积S。
【答案】(1);(2);(3),面积为.
【解析】
试题(1)由双曲线的定义可知,曲线是以为焦点的双曲线的左支,,所以方程为;(2)由于直线和双曲线相交于左支,且有两个交点,故联立直线的方程和双曲线的方程,消去后得到关于的一元二次方程的判别式大于零,且韦达定理两根的和小于零,两根的积大于零,由此列不等式组,求解的的取值范围;(3)利用弦长公式计算得直线斜率为.由题设向量关系,得到,代入双曲线方程,求得,利用面积公式求得面积为.
试题解析:
(1)由双曲线的定义可知,曲线是以为焦点的双曲线的左支,且,易知
故曲线的方程为
(2)设,由题意建立方程组
消去,得
又已知直线与双曲线左支交于两点,有解得
(3)
依题意得
整理后得
∴或
但∴
故直线的方程为
设,由已知,得
∴
又
∴点
将点的坐标代入曲线的方程,得得,
但当时,所得的点在双曲线的右支上,不合题意
∴,点的坐标为 到的距离为
∴的面积
科目:高中数学 来源: 题型:
【题目】某一段海底光缆出现故障,需派人潜到海底进行维修,现在一共有甲、乙、丙三个人可以潜水维修,由于潜水时间有限,每次只能派出一个人,且每个人只派一次,如果前一个人在一定时间内能修好则维修结束,不能修好则换下一个人.已知甲、乙、丙在一定时间内能修好光缆的概率分别为,且各人能否修好相互独立.
(1)若按照丙、乙、甲的顺序派出维修,设所需派出人员的数目为X,求X的分布列和数学期望;
(2)假设三人被派出的不同顺序是等可能出现的,现已知丙在乙的下一个被派出,求光缆被丙修好的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的坐标为,圆的方程为,动点在圆上运动,点为延长线上一点,且.
(1)求点的轨迹方程.
(2)过点作圆的两条切线, ,分别与圆相切于点, ,求直线的方程,并判断直线与点所在曲线的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)若回归直线方程,其中;试预测当单价为10元时的销量;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按元/度收费,超过200度但不超过400度的部分按元/度收费,超过400度的部分按1.0元/度收费.
(Ⅰ)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;
(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的占,求, 的值;
(Ⅲ)在满足(Ⅱ)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将要举行校园歌手大赛,现有4男3女参加,需要安排他们的出场顺序.(结果用数字作答)
(1)如果3个女生都不相邻,那么有多少种不同的出场顺序?
(2)如果3位女生都相邻,且男生甲不在第一个出场,那么有多少种不同的出场顺序?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只苍蝇和只蜘蛛被放置在方格表的一些交点处.一次操作包括以下步骤:首先,苍蝇移动到相邻的交点处或者原地不动,然后,每只蜘蛛移动到相邻交点处或者原地不动(同一交点可以同时停留多只蜘蛛).假设每只蜘蛛和苍蝇总是知道其他蜘蛛和苍蝇的位置.
(1)找出最小的正整数,使得在有限次操作内,蜘蛛能够抓住苍蝇,且与其初始位置无关;
(2)在的空间三维方格中,(1)中的结论又是怎样?
(注)题中相邻是指一个交点仅有一个坐标与另一个交点的同一坐标不同,且差值为1;题中抓住是指蜘蛛和苍蝇位于同一交点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com