精英家教网 > 高中数学 > 题目详情
已知点A(-1,0),点B (1,0),点P(x+1,y)在x轴的下方,设a=,b=,c=,d=||,且=0.
(1)求a、b、c关于x、y的表达式;
(2)求y关于x的函数关系式y=f(x),并求当y取得最小值时P点的坐标.
【答案】分析:(1)因为=(-x-2,-y),=(-x,-y),=(x+2,y),=(2,0),=(x,y),=(-2,0),由此能求出a、b、c关于x、y的表达式.
(2)因为=0,所以3x2+y2+6x=0,由于点P(x+1,y)在x轴的下方,所以y=-,(-2<x<0),y=-=-,(-2<x<0).由此能求出当y取得最小值时P点的坐标.
解答:解:(1)因为=(-x-2,-y),=(-x,-y),
所以a==x2+y2+2x,…(2分)
=(x+2,y),=(2,0),b==2x+4,…(3分)
=(x,y),=(-2,0),c==-2x,…(4分)
d==2,…(5分)
(2)因为=0,所以2(x2+y2+2x)-(2x+4)(-2x)=0,即:3x2+y2+6x=0,…(7分)
由于点P(x+1,y)在x轴的下方,所以y=-,(-2<x<0)
y=-=-,(-2<x<0)…(10分)
所以当x=-1时,ymin=-,此时P(0,-)…(12分)
点评:本题考查矩阵现向量乘法的意义和应用,解题时要认真审题,注意平面向量的数量积公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案