精英家教网 > 高中数学 > 题目详情
20.若n=${∫}_{0}^{2}$2xdx,则(x-$\frac{1}{2x}$)n的展开式中常数项为$\frac{3}{2}$.

分析 求定积分得n的值,写出二项式的通项$(-\frac{1}{2})^{r}{C}_{4}^{r}{x}^{4-2r}$,由x的指数为0求得r值,则常数项可求.

解答 解:∵n=${∫}_{0}^{2}$2xdx=${x}^{2}{|}_{0}^{2}=4$,
∴(x-$\frac{1}{2x}$)n=$(x-\frac{1}{2x})^{4}$.
其通项为Tr+1=${C}_{4}^{r}{x}^{4-r}(-\frac{1}{2x})^{r}$=$(-\frac{1}{2})^{r}{C}_{4}^{r}{x}^{4-2r}$.
由4-2r=0,得r=2.
∴展开式中常数项为$(-\frac{1}{2})^{2}{C}_{4}^{2}=\frac{3}{2}$.

点评 本题考查定积分,考查二项式的展开式,关键是熟记二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=ax3+x2+x(a为实数)
(1)试讨论函数g(x)的单调性;
(2)若对?x∈(0,+∞)恒有$g(x)≤lnx+\frac{1}{x}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤6的解集为{x|-4≤x≤8},求实数a的值;
(Ⅱ)在(1)的条件下,对任意实数x都有f(x)≥m-f(-x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=log${\;}_{\frac{1}{2}}$(x2+x-2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=x3+m-2为R上的奇函数,则函数g(x)=$\left\{\begin{array}{l}{{e}^{x}+x-m,x≤2}\\{mlnx-x,x>2}\end{array}\right.$ 的零点的个数为1个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|1<x<10,x∈N}.B={x|x=$\sqrt{n}$,n∈A}.则A∩B=(  )
A.{1,2,3}B.{x|1<x<3}C.{2,3}D.{x|1<x<$\sqrt{10}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知两个单位向量$\overrightarrow a$,$\overrightarrow b$的夹角为60°,且满足$\overrightarrow a$⊥($\overrightarrow a$-λ$\overrightarrow b$),则实数λ的值为(  )
A.-2B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)当正四棱锥P-ABCD的高为1时,求几何体E-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在等边△ABC中,点D,E分别在边AC,AB上,且AD:DC=1:2,AE:AB=2:3,BD与CE相交于点F.
(Ⅰ)证明:A,B,C,D四点共圆;
(Ⅱ)若BC=2,求△AEF外接圆的半径.

查看答案和解析>>

同步练习册答案