精英家教网 > 高中数学 > 题目详情
8.求函数y=log${\;}_{\frac{1}{2}}$(x2+x-2)的单调递增区间.

分析 由已知中函数y=log${\;}_{\frac{1}{2}}$(x2+x-2)的解析式,先确定函数的定义域,进而根据二次函数和对数函数的性质,分别判断内,外函数的单调性,进而根据复合函数“同增异减”的原则,得到答案.

解答 解:由题意,x2+x-2>0,∴x<-2或x>1,
函数y=log${\;}_{\frac{1}{2}}$(x2+x-2)的定义域为(-∞,-2)∪(1,+∞)
令t=x2+x-2,则y=log${\;}_{\frac{1}{2}}$t
∵y=log${\;}_{\frac{1}{2}}$t为减函数
t=x2+x-2的单调递减区间是(-∞,-$\frac{1}{2}$),单调递增区间是(-$\frac{1}{2}$,+∞)
故函数y=log${\;}_{\frac{1}{2}}$(x2+x-2)的单调递增区间是(-∞,-2).

点评 本题考查的知识点是二次函数的图象和性质,对数函数的单调区间,复合函数的单调性,其中复合函数单调性“同增异减”的原则,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,点A,B分别在射线l1:y=2x(x≥0),l2:y=-2x(x≥0)上运动,且S△AOB=4.
(1)求x1•x2
(2)求线段AB的中点M的轨迹方程;
(3)判定中点M到两射线的距离积是否是为定值,若是则找出该值并证明;若不是定值说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-a-1)ex
(Ⅰ)若函数的最小值为-1,求实数a的值;
(Ⅱ)若x1>x2,且有x1+x2=2a,求证:f(x1)>f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用总长为10.8m的钢条制作一个长方体容器的框架,如果所制容器底面一边的长是另一边的长的2倍,那么高为多少时容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知与定点O(0,0),A(0,3)的距离比为$\frac{1}{2}$的点P的轨迹为曲线C,过点B(0,2)的直线l与曲线C交于M,N两点.
(1)求曲线C的轨迹方程;
(2)判断$\overrightarrow{BM}$•$\overrightarrow{BN}$是否为定值?若是求出这个定值,若不是请说明理由;
(3)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C对边分别为a,b,c,且btanA,ctanB,btanB成等差数列.
(1)求角A;
(2)若a=2,试判断当bc取最大值时△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若n=${∫}_{0}^{2}$2xdx,则(x-$\frac{1}{2x}$)n的展开式中常数项为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.近几年骑车锻炼越来越受到人们的喜爱,男女老少踊跃参加,我校课外活动小组利用春节放假时间进行社会实践,将被调查人员分为“喜欢骑车”和“不喜欢骑车”,得到如表统计表和各年龄段人数频率分布直方图:
组数分组喜欢骑车锻炼的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55]150.3
(1)补全频率分布直方图,并n,a,p的值;
(2)从[40,50)岁年龄段的“喜欢骑车”中采用分层抽样法抽取18人参加骑车锻炼体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,50)岁的人数为X,求X的分布列和期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx.
(1)求函数f(x)在点(1,0)处的切线;
(2)若g(x)=-x2+ax-3,且不等式g(x)-2f(x)≤0对一切x>0恒成立,求实数a的取值范围;
(3)当x∈(0,+∞)时,求证:exlnx+$\frac{2{e}^{x-1}}{x}$>1.

查看答案和解析>>

同步练习册答案