精英家教网 > 高中数学 > 题目详情
已知一个半径为
3
的球有一个内接正方体(即正方体的顶点都在球面上),求这个球的球面面积与其内接正方体的全面积之比.
考点:球的体积和表面积
专题:计算题,空间位置关系与距离,球
分析:设球的半径为R,则正方体的对角线长为2R,求出正方体的表面积和球的表面积,从而得出球的球面面积与其内接正方体的全面积之比.
解答: 解:设球的半径为R,内接正方体的棱长为a.
则正方体的对角线长为2R,
依题意知  2R=
3
a,则
R
a
=
3
2

∴S=4πR2,S正方体=6a2
这个球的球面面积与其内接正方体的全面积之比=
R2
6a2
=
π
2
点评:本题是基础题,解题的突破口是正方体的体对角线就是球的直径,正确进行正方体的表面积的计算,是解好本题的关键,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
π
0
cos2xdx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4px(p>0)与椭圆
x2
a2
+
y2
b2
=1(a>b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的三点,向量
OA
OB
OC
满足
OA
=[f(x)+2f′(1)x]
OB
-lnx•
OC
,则函数y=f(x)的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)ln(1+x),g(x)=kx2+x,
(1)讨论函数f(x)=a的解的个数;
(2)若当x≥0时,f(x)≤g(x)恒成立,求k的最小值;
(3)若数列{
1
n
}的前n项和为Sn,求证:Sn+2lnn!≥
n(n+1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,且两个坐标系取相等的长度单位.曲线C的极坐标方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设过点P(2,0),倾斜角为
π
6
的直线l与曲线C交于A、B两点,求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在已知数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n为正整数.
(Ⅰ)证明:数列{lg(an+1)}为等比数列;
(Ⅱ)令bn=an+1,设数列{bn}的前n项积为Tn,即Tn=(a1+1)…(an+1),求lgTn
(Ⅲ)在(Ⅱ)的条件下,记Cn=
lgTn+1
[lg(an+1+1)-1][lg(an+2+1)-1]
,设数列{Cn}的前n项和为Sn,求证Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x+1|-|x-3|
(1)求函数y=f(x)的最小值;
(2)若f(x)≥ax+
a
2
-
7
2
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2x的焦点F的直线交抛物线于A、B两点,则
1
|AF|
+
1
|BF|
=
 

查看答案和解析>>

同步练习册答案