精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(1+x)ln(1+x),g(x)=kx2+x,
(1)讨论函数f(x)=a的解的个数;
(2)若当x≥0时,f(x)≤g(x)恒成立,求k的最小值;
(3)若数列{
1
n
}的前n项和为Sn,求证:Sn+2lnn!≥
n(n+1)
2
考点:数列与函数的综合,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)由已知得f′(x)=ln(1+x)+1,令f′(x)=0,得:x=
1
e
-1,利用导数的性质进行分类讨论,能求出函数f(x)=a的解的个数.
(2)令ϕ(x)=f(x)-g(x)=(1+x)ln(1+x)-kx2-x,则ϕ′(x)=ln(1+x)-2kx,利用导数性质进行分类讨论,能求出k的最小值.
(3)取k=
1
2
,得ln(1+x)≤
1
2
((1+x)-
1
1+x
),取x=n-1 得
1
n
+2lnn≤n,由此利用累加法能证明Sn+2lnn!≥
n(n+1)
2
解答: (1)解:∵f(x)=(1+x)ln(1+x),
∴f′(x)=ln(1+x)+1,
令f′(x)=0,得:x=
1
e
-1,
∴当x∈(-1,
1
e
-1)时,f′(x)<0,f(x)在(-1,
1
e
-1)上单调递减,
同理,(x)在(
1
e
-1,+∞)上单调递增,
∴当x=
1
e
-1时,f极小=-
1
e

又x∈(-1,
1
e
-1)时,f(x)<0,
∴①当a<-
1
e
时,方程f(x)=a无解;
②当a=-
1
e
或a≥0时,方程f(x)=a有一解;
③当-
1
e
<a<0时,方程f(x)=a有两解.
(2)解:令ϕ(x)=f(x)-g(x)=(1+x)ln(1+x)-kx2-x
则ϕ′(x)=ln(1+x)-2kx,
令h(x)=ln(1+x)-2kx,
则h′(x)=
1
1+x
-2k,
∵x≥0,∴
1
1+x
∈(0,1].
①当k≥
1
2
时,2k≥1,h′(x)=
1
1+x
-2k≤0,
∴h(x)在[0,+∞)上单调递减,
∴h(x)≤h(0)=0,
即ϕ′(x)≤0,∴ϕ(x)在[0,+∞)上单调递减,
∴ϕ(x)≤ϕ(0)=0∴f(x)≤g(x),
∴当k≥
1
2
时满足题意;
②当k≤0时,h′(x)=
1
1+x
-2k>0,
∴h(x)在[0,+∞)上单调递增,
∴h(x)≥h(0)=0,即ϕ′(x)≥0,
∴ϕ(x)在[0,+∞)上单调递增,
∴ϕ(x)≥ϕ(0)=0,∴f(x)≥g(x),∴当k≤0时不合题意;
③当0<k<
1
2
时,由h′(x)=
1
1+x
-2k=0,得:x=
1-2k
2k
>0,
当x∈(0,
1-2k
2k
)时,h(x)单调递增,
∴h(x)>0,即ϕ′(x)>0,
∴ϕ(x)在(0,
1-2k
2k
)上单调递增,∴ϕ(x)>0,
即f(x)>g(x),∴不合题意.
综上,k的取值范围是[
1
2
,+∞),故k的最小值为
1
2

(3)证明:由(2)知,取k=
1
2
,得:(1+x)ln(1+x)≤
1
2
x2+x,
变形得:ln(1+x)≤
x2+2x
2(1+x)
=
(1+x)2-1
2(1+x)
=
1
2
((1+x)-
1
1+x
);
取x=n-1 得:lnn≤
1
2
(n-
1
n
),即:
1
n
+2lnn≤n,
1
1
+2ln1≤1,
1
2
+2ln2≤2,
1
3
+2ln3≤3,

1
n
+2lnn≤n,
以上各式相加得:(
1
1
+
1
2
+
1
3
+…+
1
n
)+2(ln1+ln2+ln3+…+lnn)≤1+2+…+n
∴Sn+2lnn!≥
n(n+1)
2
点评:本题考查方程的解的个数的讨论,考查实数的最小值的求法,考查不等式的证明,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax2-bx(a≠0).
(Ⅰ)当b=1时,若函数f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)当b=-1时,如果f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2),记x0=
x1+x2
2
.试问:f(x)的图象在点C(x0,f(x0))处的切线是否平行于x轴?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={1,2,3,4,5},N={2,4,6,8,10},则M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直三棱柱ABC-A1B1C1中,AB1⊥A1C,D为AB的中点,且AB=4,AC=BC=3.
(1)求二面角A1-CD-B1的平面角的余弦值;
(2)求四面体CDA1B1与直三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,x)  
b
=(2x+3,-x),x∈R
(1)若
a
b
,求x的值;
(2)若y=(
a
-
b
)•
b
,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个半径为
3
的球有一个内接正方体(即正方体的顶点都在球面上),求这个球的球面面积与其内接正方体的全面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市高速公路收费站入口处的安全标识墩如图(1)所示墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH,图(2)、(3)分别是该标识墩的主视图和俯视图.

(1)请画出该安全标识墩的侧视图,并标注上相关线段的长度.
(2)为了更好地保证高速公路上的交通安全,现打算给安全标识墩重新涂上红色的油漆,每平方厘米用油漆1毫升,涂100个这样的安全标识墩需用多少油漆?

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店试销某种商品20天,获得如表数据:
日销售量(件)0123
频数1685
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(Ⅰ)设每销售一件该商品获利1000元,某天销售该商品获利情况如表,完成表,并求试销期间日平均获利数;
日获利(元)0100020003000
频率
(Ⅱ)求第二天开始营业时该商品的件数为3件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:e=cosθ+isinθ,其中i是虚数单位,θ∈R,且实数指数幂的运算性质对都e适应.若x=C
 
0
3
cos3
π
12
-C
 
2
3
cos
π
12
sin2
π
12
,y=C
 
1
3
cos2
π
12
sin
π
12
-C
 
3
3
sin3
π
12
,则x+yi
 

查看答案和解析>>

同步练习册答案