精英家教网 > 高中数学 > 题目详情
19.已知各项均为正数的数列{an}的首项a1=1,Sn是数列{an}的前n项和,且满足:anSn+1-an+1Sn+an-an+1=$\frac{1}{2}$anan+1,则$\frac{3}{34}$S12=3.

分析 根据题意,利用等比数列的前n项和公式求出通项公式an,进一步求出数列对应的前n项和公式,再计算$\frac{3}{34}$S12的值.

解答 解:∵anSn+1-an+1Sn+an-an+1=$\frac{1}{2}$anan+1,且Sn+1=Sn+an+1
∴(an-an+1)Sn+$\frac{1}{2}$anan+1+an-an+1=0,
∴Sn+$\frac{{{a}_{n}a}_{n+1}}{2{(a}_{n}{-a}_{n+1})}$+1=0;
又∵a1=1,令n=1,则1+$\frac{{a}_{2}}{2(1{-a}_{2})}$+1=0,解得a2=$\frac{4}{3}$,
同理可得a3=$\frac{5}{3}$,
猜想an=$\frac{n+2}{3}$;
下面利用数学归纳法证明:
①当n=1时,a1=$\frac{1+2}{3}$=1,成立;
②假设当n≤k(k∈N*)时成立,ak=$\frac{k+2}{3}$,则Sk=$\frac{k(1+\frac{k+2}{3})}{2}$=$\frac{k(k+5)}{6}$;
∵Sk+$\frac{{{a}_{k}a}_{k+1}}{2{(a}_{k}{-a}_{k+1})}$+1=0,
∴$\frac{k(k+5)}{6}$+$\frac{\frac{k+2}{3}{•a}_{k+1}}{\frac{k+2}{3}{-a}_{k+1}}$+1=0,
解得ak+1=$\frac{k+3}{3}$;
因此当n=k+1时也成立,
综上,对于n∈N*,an=$\frac{n+2}{3}$都成立;
由等差数列的前n项和公式得,Sn=$\frac{n(n+5)}{6}$;
∴$\frac{3}{34}$S12=$\frac{3}{34}$×$\frac{12×(12+5)}{6}$=3.

点评 本题考查了等比数列的通项公式与前n项和公式、递推关系、数学归纳法的应用问题,也考查了猜想归纳推理能力与计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.等比数列{an}中,若已知a2=4和a3=8,求该数列的通项公式及前5项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为$\frac{41π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=4x,其焦点为F,定点E(1,2).
(1)过点G(5,-2)的直线与抛物线C交于M,N两点(不同于点E),记直线EM,EN的斜率分别为k1,k2,求k1•k2
(2)设Q为抛物线C的准线上一点,是否存在过焦点F的直线l与抛物线C交于不同的两点A,B,使得△ABQ为正三角形?若能,求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列四个结论,正确的是①③.(填序号)
①a>b,c<d⇒a-c>b-d;
②a>b>0,c<d<0⇒ac>bd;
③a>b>0⇒$\root{3}{a}>\root{3}{b}$;
④a>b>0⇒$\frac{1}{a^2}>\frac{1}{b^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.空间四边形ABCD中,AB=BC=CD=DA=AC=BD=a,M,N分别是BC与AD的中点,设AM和CN所成角为α,则cosα的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},则A∩∁UB=(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=$\sqrt{6}$,若$\overrightarrow{a}$,$\overrightarrow{b}$间的夹角为$\frac{3π}{4}$,则|4$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{57}$B.$\sqrt{61}$C.$\sqrt{78}$D.$\sqrt{85}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5},集合M={1,2,3},N={3,4,5},则集合{1,2}可以表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∩(∁UN)

查看答案和解析>>

同步练习册答案