分析 (1)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式可得sinA(-$\sqrt{2}$cosC+1)=0,结合sinA≠0,可求cosC,结合范围C∈(0,π),可求C的值.
(2)由余弦定理即可解得c的值.
解答 解:(1)∵(-$\sqrt{2}$a+b)cos C+ccos B=0,
∴(-$\sqrt{2}$sinA+sinB)cosC+sinCcosB=0,
∴sinA(-$\sqrt{2}$cosC+1)=0,
∵A∈(0,π),可得sinA≠0,
∴cosC=$\frac{\sqrt{2}}{2}$,
又∵C∈(0,π),
∴C=$\frac{π}{4}$.
(2)由余弦定理可得:c2=a2+b2-2abcosC=4+2-2×$2×\sqrt{2}×\frac{\sqrt{2}}{2}$=2,
解得:c=$\sqrt{2}$.
点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com