精英家教网 > 高中数学 > 题目详情
已知直三棱柱中,的中点。(Ⅰ)求点C到平面的距离;(Ⅱ)若,求二面角的平面角的余弦值。
:(Ⅰ)(Ⅱ)
:(Ⅰ)因,D为AB的中点,得。又所以到平面的距离为
(Ⅱ):如答(19)图1,取的中点,连接,则又由(Ⅰ)知 面 , 为所求的二面角的平面角。
在面上的射影,又已知 由三垂线定理的逆定理得从而都与互余,因此,所以,因此
从而所以在中,
【考点定位】本小题主要考查立体几何的相关知识,具体涉及到线面垂直的关系、二面角的求法及空间向量在立体几何中的应用,解决此类问题的关键是熟悉几何体的结构特征,熟练进行线线垂直与线面垂直的转化,主要考查学生的空间想象能力与推理论证能力.本题可以利用空间向量来解题从而降低了题目的难度
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在长方体中,为棱上一点.

(1)若,求异面直线所成角的正切值;
(2)是否存在这样的点使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,均是边长为2的等边三角形,且它们所在平面互相垂直,.
(1)    求证: ||
(2)    求二面角的余弦值。.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把正方形以边所在直线为轴旋转到正方形,其中分别为的中点.
(1)求证:∥平面
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,则下列结论错误的是(    )
A.若
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面. 考察下列命题,其中真命题是
A.B.,
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在四棱锥中,底面为矩形,平面⊥平面,,的中点,
求证:(1)∥平面;(2)平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把长、宽各为4、3的长方形ABCD沿对角线AC折成直二面角,求顶点B和D的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,求证:AC1BD.

查看答案和解析>>

同步练习册答案