分析 根据组合数的公式,化简${C}_{n+3}^{n+1}$=${C}_{n+1}^{n-1}$+${C}_{n+1}^{n}$+${C}_{n}^{n-2}$,求n的值即可.
解答 解:∵${C}_{n+3}^{n+1}$=${C}_{n+1}^{n-1}$+${C}_{n+1}^{n}$+${C}_{n}^{n-2}$,
即${C}_{n+3}^{2}$=${C}_{n+1}^{2}$+${C}_{n+1}^{1}$+${C}_{n}^{2}$;
∴$\frac{(n+3)(n+2)}{2}$=$\frac{n(n+1)}{2}$+(n+1)+$\frac{n(n-1)}{2}$,
整理,得n2-3n-4=0;
解得n=4或n=-1(舍去),
∴n的值是4.
点评 本题考查了组合数公式的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{15}$ | C. | $\frac{2}{15}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com