精英家教网 > 高中数学 > 题目详情
10.已知直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,则$\frac{1}{a}+\frac{1}{b}$的最小值为4.

分析 圆心为(2,-1),则代入直线得:2a+2b=2,即a+b=1,利用基本不等式,即可求出$\frac{1}{a}+\frac{1}{b}$的最小值.

解答 解:圆心为(2,-1),则代入直线得:2a+2b=2,即a+b=1,则有$\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a}+\frac{a+b}{b}=2+\frac{b}{a}+\frac{a}{b}≥2+2\sqrt{\frac{b}{a}•\frac{a}{b}}=4$,(当且仅当$a=b=\frac{1}{2}$时取等号)
故答案为4.

点评 本题考查直线与圆的位置关系,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|2x+1|,g(x)=|x-1|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=5$,$|\overrightarrow a-\overrightarrow b|=3$,则$\overrightarrow a•\overrightarrow b$=(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+$\frac{a}{x}$-1的图象与x轴相切.
(Ⅰ)求证:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt{b}$,求证:(b-1)logbx>$\frac{{{x^2}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|-|MB||.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}前n项和为Sn,S7+S5=10,a3=5,则S7=(  )
A.25B.49C.-15D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,a1=1,an+1=2an,${S_n}=a_1^2-a_2^2+a_3^2-a_4^2+$…$+a_{2n-1}^2-a_{2n}^2$等于(  )
A.$\frac{1}{3}({2^n}-1)$B.$\frac{1}{5}(1-{2^{4n}})$C.$\frac{1}{3}({4^n}-1)$D.$\frac{1}{3}(1-{2^n})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面边长为1的正方形,每条侧棱的长均为$\sqrt{2}$,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求三棱锥P-ACD的体积.

查看答案和解析>>

同步练习册答案