精英家教网 > 高中数学 > 题目详情
2.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为12.

分析 根据题意,先将5名志愿者分成3组,再将分好的三组全排列,对应3个社区,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,先将5名志愿者分成3组,
由于甲、乙两名女志愿者需到同一社区,将甲乙看成第一组,
将第三名女志愿者与一名男志愿者作为第二组,剩下的男志愿者作为第三组,
则有C22C21C11=2种分组方法;
再将分好的三组全排列,对应3个社区,有A33=6种情况,
则不同的分法种数为2×6=12种;
故答案为:12.

点评 本题考查排列、组合的应用,注意要先按要求分组,再进行全排列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=min{xlnx,$\frac{{x}^{2}}{{e}^{x}}$}(min{a,b}表示a,b中的较小者),则函数f(x)的最大值为(  )
A.$\frac{4}{{e}^{2}}$B.2ln2C.$\frac{1}{e}$D.$\frac{3}{2}$ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y=\sqrt{1-{{log}_2}(x+1)}$的定义域为(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,则$\frac{1}{a}+\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数$f(x)=sin({2x-\frac{π}{6}})$的图象向右平移$\frac{π}{12}$个单位后得到的图象的一条对称轴是(  )
A.$x=\frac{π}{4}$B.$x=\frac{3π}{8}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}的前n项和为${S_n}=\frac{2}{3}{n^2}-\frac{1}{3}n$,则数列an=$\frac{4}{3}$n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex-ax-1(a>0).
(1)若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(2)在(1)的条件下,证明:($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z的共轭复数为$\overline{z}$,若($\frac{3z}{2}$+$\frac{\overline{z}}{2}$)(1-2$\sqrt{2}$i)=5-$\sqrt{2}$i(i为虚数单位),则在复平面内,复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为(  )
A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥β
C.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β

查看答案和解析>>

同步练习册答案