精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ex-ax-1(a>0).
(1)若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(2)在(1)的条件下,证明:($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).

分析 (1)求函数的导数,利用函数的单调性和导数之间的关系,即可求函数f(x)的最小值,f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0;
(2)证明(1-$\frac{k}{n}$)n≤(${e}^{-\frac{k}{n}}$)n=e-k,即可证明($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).

解答 解:(1)f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0.
f'(x)=ex-a,
由f'(x)=ex-a=0得x=lna,
由f'(x)>0得,x>lna,此时函数单调递增,
由f'(x)<0得,x<lna,此时函数单调递减,
即f(x)在x=lna处取得极小值且为最小值,
最小值为f(lna)=elna-alna-1=a-alna-1,
设g(a)=a-alna-1,所以g(a)≥0.
由g′(a)=1-lna-1=-lna=0得a=1.
∴g(a)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴g(a)在a=1处取得最大值,而g(1)=0.
因此g(a)≥0的解为a=1,∴a=1.
证明:(2)由(1)知,对任意实数x均有ex-x-1≥0,即1+x≤ex
令$x=-\frac{k}{n}$(n∈N*,k=0,1,2,3,…,n-1),则0<1-$\frac{k}{n}$<e${\;}^{-\frac{k}{n}}$.
∴(1-$\frac{k}{n}$)n≤(${e}^{-\frac{k}{n}}$)n=e-k
∴($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n≤e-(n-1)+e-(n-2)+…+e-2+e-1+1
=$\frac{{1-{e^{-n}}}}{{1-{e^{-1}}}}<\frac{1}{{1-{e^{-1}}}}=\frac{e}{e-1}$.
故($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).

点评 本题主要考查函数的单调性和导数的之间关系,以及不等式恒成立问题,考查不等式的证明,将不等式恒成立转化为求函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.抛物线y=$\frac{1}{8}$x2的焦点到准线的距离为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|-|MB||.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.天气预报说,在近期每天下雨的概率均为40%,用计算机随机函数产生0到9之间整数进行模拟,记产生的数为1,2,3,4时表示下雨,产生的数为5,6,7,8,9,0时表示不下雨,每次模拟产生3个数,20次模拟得到的实验数据如下:
907966191925271932812458569683
431257393027556488730113537989
则近3天中恰有2天下雨的概率估计为(  )
A.0.2B.0.25C.0.35D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,a1=1,an+1=2an,${S_n}=a_1^2-a_2^2+a_3^2-a_4^2+$…$+a_{2n-1}^2-a_{2n}^2$等于(  )
A.$\frac{1}{3}({2^n}-1)$B.$\frac{1}{5}(1-{2^{4n}})$C.$\frac{1}{3}({4^n}-1)$D.$\frac{1}{3}(1-{2^n})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+ϕ)+b(|ϕ|<π),则这段曲线的函数解析式可以为y=10sin($\frac{π}{8}x+\frac{3π}{4}$)+20;(6≤x≤14).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\vec a$、$\vec b$满足$({\vec a+2\vec b})•({\vec a-\vec b})=-6$,且$|{\vec a}|=1$,$|{\vec b}|=2$,则$\vec a$与$\vec b$的夹角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的是等差数列,a1≥-2,a2≤1,a3≥0,则a4≥3的概率是$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案