精英家教网 > 高中数学 > 题目详情
11.已知复数z的共轭复数为$\overline{z}$,若($\frac{3z}{2}$+$\frac{\overline{z}}{2}$)(1-2$\sqrt{2}$i)=5-$\sqrt{2}$i(i为虚数单位),则在复平面内,复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 设z=a+bi(a,b∈R),代入($\frac{3z}{2}$+$\frac{\overline{z}}{2}$)(1-2$\sqrt{2}$i)=5-$\sqrt{2}$i,利用复数代数形式的乘除运算化简后利用复数相等的条件列式求得a,b的值得答案.

解答 解:设z=a+bi(a,b∈R),
则由($\frac{3z}{2}$+$\frac{\overline{z}}{2}$)(1-2$\sqrt{2}$i)=5-$\sqrt{2}$i,得
$\frac{3(a+bi)+a-bi}{2}×(1-2\sqrt{2}i)=5-\sqrt{2}i$,
即$(2a+2\sqrt{2}b)+(b-4\sqrt{2}a)i=5-\sqrt{2}i$,
得$\left\{\begin{array}{l}{2a+2\sqrt{2}b=5}\\{4\sqrt{2}a-b=\sqrt{2}}\end{array}\right.$,解得a=$\frac{1}{2}$,b=$\sqrt{2}$.
∴在复平面内,复数z所对应的点的坐标为($\frac{1}{2},\sqrt{2}$),位于第一象限.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=5$,$|\overrightarrow a-\overrightarrow b|=3$,则$\overrightarrow a•\overrightarrow b$=(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,a1=1,an+1=2an,${S_n}=a_1^2-a_2^2+a_3^2-a_4^2+$…$+a_{2n-1}^2-a_{2n}^2$等于(  )
A.$\frac{1}{3}({2^n}-1)$B.$\frac{1}{5}(1-{2^{4n}})$C.$\frac{1}{3}({4^n}-1)$D.$\frac{1}{3}(1-{2^n})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,某地一天6~14时的温度变化曲线近似满足函数y=Asin(ωx+ϕ)+b(|ϕ|<π),则这段曲线的函数解析式可以为y=10sin($\frac{π}{8}x+\frac{3π}{4}$)+20;(6≤x≤14).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,在正方体AC1中,AB=2,A1C1∩B1D1=E,直线AC与直线DE所成的角为α,直线DE与平面BCC1B1所成的角为β,则cos(α-β)=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\vec a$、$\vec b$满足$({\vec a+2\vec b})•({\vec a-\vec b})=-6$,且$|{\vec a}|=1$,$|{\vec b}|=2$,则$\vec a$与$\vec b$的夹角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面边长为1的正方形,每条侧棱的长均为$\sqrt{2}$,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市容局规定:如天不降雨,则洒水车要在街道洒水,现由天气预报得知某地未来3天降雨概率是:第1天为60%,后2天均为50%,3天内任何一天没有降雨则在当天实施洒水,否则当天不实施洒水.
(Ⅰ)求至少有1天需要实施洒水的概率;
(Ⅱ)求不需要实施洒水的天数x的分布列和期望.

查看答案和解析>>

同步练习册答案