分析 由AC∥A1E,知α=∠A1ED,过E作EF⊥平面ADD1A1,交A1D1于F,则β=∠EDF,由此能求出cos(α-β)的值.
解答 解:∵在正方体AC1中,AB=2,A1C1∩B1D1=E,![]()
AC∥A1E,直线AC与直线DE所成的角为α,
∴α=∠A1ED,且A1E=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,DE=$\sqrt{4+2}=\sqrt{6}$,A1D=$\sqrt{4+4}=2\sqrt{2}$,
∴cosα=$\frac{{A}_{1}{E}^{2}+D{E}^{2}-{A}_{1}{D}^{2}}{2×{A}_{1}E×DE}$=$\frac{2+6-8}{2×\sqrt{2}×\sqrt{6}}$=0,sinα=1,
过E作EF⊥平面ADD1A1,交A1D1于F,则F是A1D1的中点,
∵平面ADD1A1∥平面BCC1B1,直线DE与平面BCC1B1所成的角为β,
∴β=∠EDF,且EF=1,DF=$\sqrt{4+1}=\sqrt{5}$,
sinβ=$\frac{EF}{DE}$=$\frac{\sqrt{6}}{6}$,cosβ=$\frac{DF}{DE}$=$\frac{\sqrt{5}}{\sqrt{6}}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=0×$\frac{\sqrt{5}}{\sqrt{6}}$+1×$\frac{\sqrt{6}}{6}$=$\frac{\sqrt{6}}{6}$.
故答案为:$\frac{{\sqrt{6}}}{6}$.
点评 本题考查两角差的余弦值的求法,考查余弦定理、勾股定理的应用,考查推理论证能力、运算求解能力、空间思维能力,考查函数与方程思想、化归转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {x|1<x≤3} | C. | {x|1<x<3} | D. | {x|1≤x<3} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com