精英家教网 > 高中数学 > 题目详情
14.给出平面区域为图中四边形ABOC内部及其边界,目标函数为z=ax-y,若当且仅当x=1,y=1时,目标函数z取最小值,则实数a的取值范围是$-1<a<-\frac{1}{2}$.

分析 根据约束条件画出可行域,利用几何意义求最值,z=ax-y表示直线在y轴上的截距的相反数,a表示直线的斜率,只需求出a取值在什么范围时,直线z=ax-y在y轴上的截距最优解在点A处即可.

解答 解:由可行域可知,直线AC的斜率=$\frac{1-0}{1-2}$=-1,
直线AB的斜率=$\frac{1-\frac{3}{2}}{1-0}$=-$\frac{1}{2}$,
当直线z=ax-y的斜率介于AC与AB之间时,
A(1,1)是该目标函数z=ax-y的唯一最优解,
所以-1<a<-$\frac{1}{2}$
故答案为:$-1<a<-\frac{1}{2}$.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于中档题.解答的关键是根据所给区域得到关于直线斜率的不等关系,这是数学中的数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在?ABCD中,已知$\overrightarrow{AC}$=(-4,2),$\overrightarrow{BD}$=(2,-6),那么|2$\overrightarrow{AB}$+$\overrightarrow{AD}$|=(  )
A.5$\sqrt{5}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.$\sqrt{85}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=3sin($\frac{x}{4}$+$\frac{π}{6}$)(x∈R)的最小正周期(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若△MAB是直角三角形,则此双曲线的离心率e的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知k,m∈N*,若存在互不相等的正整数a1,a2,…,am,使得a1a2,a2a3,…,am-1am,ama1同时小于k,则记f(k)为满足条件的m的最大值.
(1)求f(6)的值;
(2)对于给定的正整数n(n>1),
(ⅰ)当n(n+2)<k≤(n+1)(n+2)时,求f(k)的解析式;
(ⅱ)当n(n+1)<k≤n(n+2)时,求f(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)(x∈R)的单调增区间;
(2)若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],求sin(2α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果ξ~B $({20,\frac{1}{3}})$,则使P(ξ=k)取最大值时的k值为(  )
A.5或6B.6或7C.7或8D.以上均错

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1-$\root{3}{x}$)7的展开式中x2的系数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{{\begin{array}{l}{9,x≥3}\\{-{x^2}+6x,x<3}\end{array}}\right.$,则不等式f(x2-2x)<f(3x-4)的解集是(1,3).

查看答案和解析>>

同步练习册答案