精英家教网 > 高中数学 > 题目详情
11.已知cosα=$\frac{4}{5}$且α∈$(-\frac{π}{2},0)$,则sin2α的值为-$\frac{24}{25}$.

分析 由已知利用同角三角函数基本关系式可求sinα,进而利用二倍角的正弦函数公式即可计算.

解答 解:∵cosα=$\frac{4}{5}$,α∈(-$\frac{π}{2}$,0),
∴sinα=-$\sqrt{1{-cos}^{2}α}$=-$\frac{3}{5}$.
∴sin2α=2sinαcosα=2×(-$\frac{3}{5}$)×$\frac{4}{5}$=-$\frac{24}{25}$.
故答案为:-$\frac{24}{25}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知长方形ABCD中,AD=$\sqrt{2}$,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P-BCDE,如图所示.
(1)若点M为PC中点,求证:BM∥平面PDE;
(2)求证:DE⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点A的直线l与抛物线y2=2x有且只有一个公共点,这样的l的条数是1或2或3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两定点F1(-2,0),F2(2,0),点P是平面上一动点,且|PF1|+|PF2|=4,则点P的轨迹是(  )
A.B.直线C.椭圆D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,i为虚数单位,若(1+i)(a+i)为纯虚数,则a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列结论:
①y=x2+1,x∈[-1,2],y的值域[2,5]是;
②幂函数图象一定不过第四象限;
③函数f(x)=loga(2x-1)-1的图象过定点(1,0);
④若loga$\frac{1}{2}$>1,则a的取值范围是($\frac{1}{2}$,1);
⑤函数f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是既奇又偶的函数;
其中正确的序号是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④y=2|x|的最小值为1
⑤对于函数f(x),若f(-1)•f(3)<0,则方程f(x)=0在区间[-1,3]上有一实根;
其中正确命题的序号是③④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则a的取值范围是(  )
A.a≥3B.a≤-3C.a≤5D.a≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={2,3,4,8,9,16},若a∈A,b∈A,则事件“logab不为整数但$\frac{b}{a}$为整数”发生的概率为$\frac{1}{18}$.

查看答案和解析>>

同步练习册答案