精英家教网 > 高中数学 > 题目详情
10.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{x≤2}\end{array}}\right.$,则目标函数z=-x+2y的最大值为6.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,经过点A(2,4)时,直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,的截距最大,
此时z最大.
代入目标函数z=-x+2y得z=-2+2×4=6.
即目标函数z=2x+y的最大值为6.
故答案为:6.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,∠BAC=120°,AB=2,AC=3,若点D、E都在边BC上,且∠BAD=∠CAE=30°,则$\frac{BD•BE}{CD•CE}$=$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=1nx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:当x>0时,$f(x)≥1-\frac{1}{x}$;
(Ⅲ)若x-1>a1nx对任意x>1恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z1=1-i,z2=-2+3i,则复数$\frac{{i•{z_2}}}{z_1}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0),直线$l:y=\sqrt{3}({x-1})$,l与C交于A,B两点,若$AB=\frac{16}{3}$,则p=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AC=AB1
(1)证明:AB⊥B1C;
(2)若$B{B_1}=a,∠CB{B_1}=\frac{2π}{3}$,平面AB1C⊥平面BB1C1C,直线AB与平面BB1C1C所成角为$\frac{π}{4}$,求点B1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示的程序框图,运行程序后,输出的结果为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)若AD=$\sqrt{6}$,求三棱锥E-CBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有(  )
A.18种B.24种C.48种D.36种

查看答案和解析>>

同步练习册答案