分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,经过点A(2,4)时,直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,的截距最大,
此时z最大.
代入目标函数z=-x+2y得z=-2+2×4=6.
即目标函数z=2x+y的最大值为6.
故答案为:6.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18种 | B. | 24种 | C. | 48种 | D. | 36种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com