精英家教网 > 高中数学 > 题目详情
13.正四棱锥的主视图是一个边长为4的正三角形,则正四棱锥的斜高与底面所成角的大小为60°.

分析 根据条件作出正四棱锥对应的直观图,判断正四棱锥的斜高与底面所成角与主视图的关系进行求解即可.

解答 解:分别取BC,AD的中点E,F,则△PEF,就是正四棱锥的主视图,
则△PEF是边长为4的正三角形,
PF是正四棱锥的一个斜高,
则∠PFE是斜高与底面所成的角,
∵△PEF是边长为4的正三角形,
∴∠PFE=60°,
故答案为:60°

点评 本题主要考查正四棱锥的性质,结合主视图判断正四棱锥的斜高与底面所成的角与主视图的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,使得x2+4x+6<0,则下列说法正确的是(  )
A.¬p:?x∈R,使得x2+4x+6≥0,为真命题B.¬p:?x∈R,使得x2+4x+6≥0,为假命题
C.¬p:?x∈R,使得x2+4x+6≥0,为真命题D.¬p:?x∈R,使得x2+4x+6≥0,为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC是边长为1的正三角形,动点M在平面ABC内,若$\overrightarrow{AM}•\overrightarrow{AB}<0$,$|\overrightarrow{CM}|=1$,则$\overrightarrow{CM}•\overrightarrow{AB}$的取值范围是[-1,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系xoy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标,曲线C1的极坐标方程是ρ=$\frac{6}{\sqrt{4+5si{n}^{2}θ}}$,曲线C2的参数方程是$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2+2sinθ}\\{\;}\end{array}\right.$(θ为参数)
(1)写出曲线C1,C2的普通方程;
(2)设曲线C1与y轴相交于A,B两点,点P为曲线C2上任一点,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),l与C分别交于M,N,P(-2,-4).
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD的底面是菱形,∠DAB=60°,PA⊥AD,平面PAB⊥平面ABCD,AP=2,AD=2.
(I)求证:PA⊥平面ABCD;
(Ⅱ)已知M是PB的中点,求MC与平面AMB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.
(1)求曲线C的极坐标方程;
(2)设曲线C与直线l交于点A,B,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ.设直线l与曲线C交于A,B两点,弦长|AB|=$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.我国人口老龄化问题已经开始凸显,只有逐步调整完善生育政策,才能促进人口长期均衡发展,十八届五中全会提出“二胎全面放开”政策.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,其中男女比例为3:2,被调查的男性公务员中,表示有意愿生二胎的占$\frac{5}{6}$;被调查的女性公务员中表示有意愿要二胎的占$\frac{3}{8}$.
(1)根据调查情况完成下面2×2列联表
 男性公务员女性公务员 总计 
 生二胎   
 不生二胎   
 总计  
(2)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d.
临界值表
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

同步练习册答案