8£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬lÓëC·Ö±ð½»ÓÚM£¬N£¬P£¨-2£¬-4£©£®
£¨1£©Ð´³öCµÄÆ½ÃæÖ±½Ç×ø±êϵ·½³ÌºÍlµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖª|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a¦Ñcos¦È£¨a£¾0£©£¬°Ñx=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈë¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯ÎªÆÕͨ·½³Ì£ºy=x-2£®
£¨2£©µãP£¨-2£¬-4£©ÔÚÖ±ÏßlÉÏ£¬¿ÉµÃÖ±ÏßlµÄ±ê×¼·½³Ì£º$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}m}\\{y=-4+\frac{\sqrt{2}}{2}m}\end{array}\right.$£¬´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£ºm2-$£¨8\sqrt{2}+\sqrt{2}a£©$m+4a+32=0£¬|PM|=m1£¬|PN|=m2£¬|MN|=|m1-m2|=$\sqrt{£¨{m}_{1}+{m}_{2}£©^{2}-4{m}_{1}{m}_{2}}$£¬ÓÉÓÚ|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬¿ÉµÃ|MN|2=|PM|•|PN|£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¼´¦Ñ2sin2¦È=2a¦Ñcos¦È£¨a£¾0£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºy2=2ax£¨a£¾0£©£®

Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£ºy=x-2£®
£¨2£©µãP£¨-2£¬-4£©ÔÚÖ±ÏßlÉÏ£¬¿ÉµÃÖ±ÏßlµÄ±ê×¼·½³Ì£º$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}m}\\{y=-4+\frac{\sqrt{2}}{2}m}\end{array}\right.$£¬´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£ºm2-$£¨8\sqrt{2}+\sqrt{2}a£©$m+4a+32=0£¬
¡÷=$£¨8\sqrt{2}+\sqrt{2}a£©^{2}$-4£¨4a+32£©=2a2+16a£¾0£¬£¨a£¾0£©£®
¡àm1+m2=$8\sqrt{2}+\sqrt{2}a$£¬m1m2=4a+32£®
|PM|=m1£¬|PN|=m2£¬|MN|=|m1-m2|=$\sqrt{£¨{m}_{1}+{m}_{2}£©^{2}-4{m}_{1}{m}_{2}}$=$\sqrt{£¨8\sqrt{2}+\sqrt{2}a£©^{2}-4£¨4a+32£©}$=$\sqrt{2{a}^{2}+16a}$£®
¡ß|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬
¡à|MN|2=|PM|•|PN|£¬
¡à2a2+16a=m1m2=4a+32£¬»¯Îª£ºa2+6a-16=0£¬a£¾0£¬
½âµÃa=2£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¼°ÆäÓ¦Óá¢ÏÒ³¤¹«Ê½¡¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=2an£¨n¡ÊN*£©ÇÒa2=1£¬Ôòlog2a2015=£¨¡¡¡¡£©
A£®2012B£®2013C£®2014D£®2015

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®log816=$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÇúÏßC1£ºx+$\sqrt{3}$y=$\sqrt{3}$ºÍC2£º$\left\{\begin{array}{l}{x=\sqrt{6}cos¦Õ}\\{y=\sqrt{2}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬x ÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇÒÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®
£¨1£©°ÑÇúÏßC1¡¢C2µÄ·½³Ì»¯Îª¼«×ø±ê·½³Ì
£¨2£©ÉèC1ÓëxÖá¡¢yÖá½»ÓÚM£¬NÁ½µã£¬ÇÒÏß¶ÎMNµÄÖеãΪP£®ÈôÉäÏßOPÓëC1¡¢C2½»ÓÚP¡¢QÁ½µã£¬ÇóP£¬QÁ½µã¼äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl£ºx-y=1£¬ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC£º¦Ñ2+¦Ñ2sin2¦È-2=0£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚP¡¢QÁ½µã£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó¡÷OPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÕýËÄÀâ×¶µÄÖ÷ÊÓͼÊÇÒ»¸ö±ß³¤Îª4µÄÕýÈý½ÇÐΣ¬ÔòÕýËÄÀâ×¶µÄб¸ßÓëµ×ÃæËù³É½ÇµÄ´óСΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®É躯Êýf¡ä£¨x£©=x2+3x-4£¬Ôòy=f£¨x+1£©µÄµ¥µ÷¼õÇø¼äΪ£¨-5£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=\sqrt{3}sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãAµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£®
£¨1£©Ð´³öÇúÏßCµÄ¼«×ø±ê·½³Ì£¬²¢Çó³öÇúÏßCÔڵ㣨$\sqrt{2}$£¬1£©´¦µÄÇÐÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô¹ýµãAµÄÖ±ÏßmÓëÇúÏßCÏàÇУ¬ÇóÖ±ÏßmµÄбÂÊkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®4ÔÂ23ÈÕÊÇ¡°ÊÀ½ç¶ÁÊéÈÕ¡±£¬Ä³ÖÐѧÔÚ´ËÆÚ¼ä¿ªÕ¹ÁËһϵÁеĶÁÊé½ÌÓý»î¶¯£¬²¢Óüòµ¥Ëæ»ú³éÑù·½·¨³éÈ¡ÁË100ÃûѧÉú¶ÔÆä¿ÎÍâÔĶÁʱ¼ä½øÐе÷²é£¬ÏÂÃæÊǸù¾Ýµ÷²é½á¹û»æÖƵÄѧÉúÈÕ¾ù¿ÎÍâÔĶÁʱ¼ä£¨µ¥Î»£º·ÖÖÓ£©µÄƵÂÊ·Ö²¼Ö±·½Í¼£¬Èô½«ÈÕ¾ù¿ÎÍâÔĶÁʱ¼ä²»µÍÓÚ60·ÖÖÓµÄѧÉú³ÆÎª¡°¶ÁÊéÃÕ¡±£¬µÍÓÚ60·ÖÖÓµÄѧÉú³ÆÎª¡°·Ç¶ÁÊéÃÕ¡±
£¨¢ñ£©ÇóxµÄÖµ²¢¹À¼Æ¸ÃУ3000ÃûѧÉúÖжÁÊéÃÕ´ó¸ÅÓжàÉÙ£¿£¨½«ÆµÂÊÊÓΪ¸ÅÂÊ£©
£¨¢ò£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2µÄÁÐÁª±í£¬²¢¾Ý´ËÅжÏÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°¶ÁÊéÃÕ¡±ÓëÐÔ±ðÓйأ¿
·Ç¶ÁÊéÃÔ¶ÁÊéÃԺϼÆ
ÄР15 
Å®  45
ºÏ¼Æ  
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬ÄÜ·ñÌá³ö¸üºÃµÄµ÷²é·½·¨À´¹À¼Æ¸ÃµØÇøµÄѧÉúµÄ¿ÎÍâÔĶÁʱ¼ä£¿ËµÃ÷ÀíÓÉ£®
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d
P£¨K2¡Ýk0£©0.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸