17£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=\sqrt{3}sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãAµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£®
£¨1£©Ð´³öÇúÏßCµÄ¼«×ø±ê·½³Ì£¬²¢Çó³öÇúÏßCÔڵ㣨$\sqrt{2}$£¬1£©´¦µÄÇÐÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©Èô¹ýµãAµÄÖ±ÏßmÓëÇúÏßCÏàÇУ¬ÇóÖ±ÏßmµÄбÂÊkµÄÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=\sqrt{3}sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1£¬¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£¬½ø¶øµÃ³ö¼«×ø±ê·½³Ì£®µã£¨$\sqrt{2}$£¬1£©ÔÚÇúÏßCÉÏ£¬¹ÊÇÐÏßµÄбÂÊ=-$\frac{1}{\frac{1}{\sqrt{2}}}$=-$\sqrt{2}$£¬¼´¿ÉµÃ³öÇÐÏß·½³Ì£¬½ø¶ø»¯Îª¼«×ø±ê·½³Ì£®
£¨2£©µãAµÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±êA$£¨2\sqrt{2}cos\frac{¦Ð}{4}£¬2\sqrt{2}sin\frac{¦Ð}{4}£©$£¬¼´A£¨2£¬2£©£®Éè¹ýÖ±ÏßmµÄбÂÊΪk£¬y=k£¨x-2£©+2£¬ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=\sqrt{3}sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬¡ßcos2¦Á+sin2¦Á=1£¬¡àx2+y2=3£®¿ÉµÃ¼«×ø±ê·½³ÌΪ£º¦Ñ2=3£¬¼´$¦Ñ=\sqrt{3}$£®
¡ßµã£¨$\sqrt{2}$£¬1£©ÔÚÇúÏßCÉÏ£¬¹ÊÇÐÏßµÄбÂÊk=-$\frac{1}{\frac{1}{\sqrt{2}}}$=-$\sqrt{2}$£¬¹ÊÇÐÏߵķ½³ÌΪ£ºy-1=$-\sqrt{2}$£¨x-$\sqrt{2}$£©£¬¿ÉµÃ£º$\sqrt{2}$x+y=3£®¼´$\sqrt{2}¦Ñ$cos¦È+¦Ñsin¦È=3£®
£¨2£©µãAµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êA$£¨2\sqrt{2}cos\frac{¦Ð}{4}£¬2\sqrt{2}sin\frac{¦Ð}{4}£©$£¬¼´A£¨2£¬2£©£®Éè¹ýÖ±ÏßmµÄбÂÊΪk£¬y=k£¨x-2£©+2£¬
¡ßÖ±ÏßÓëÔ²ÏàÇУ¬¡à$\frac{|2k-2|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}$£¬¡àk2-8k+1=0£¬½âµÃk=4$¡À\sqrt{15}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ô²µÄ²ÎÊý·½³Ì¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôË«ÇúÏßmx2+y2=1£¨m£¼-1£©µÄÀëÐÄÂÊÇ¡ºÃÊÇʵÖ᳤ÓëÐéÖ᳤µÄµÈ±ÈÖÐÏÔòm=-7-4$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬lÓëC·Ö±ð½»ÓÚM£¬N£¬P£¨-2£¬-4£©£®
£¨1£©Ð´³öCµÄÆ½ÃæÖ±½Ç×ø±êϵ·½³ÌºÍlµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖª|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl¹ýµãM£¨3£¬4£©£¬ÆäÇãб½ÇΪ45¡ã£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2+2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÔÙÒÔÔ­µãΪ¼«µã£¬ÒÔxÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬²¢Ê¹µÃËüÓëÖ±½Ç×ø±êϵxoyÓÐÏàͬµÄ³¤¶Èµ¥Î»£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚµãA£¬B£¬Çó|MA|+|MB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏADC=90¡ã£¬AB¡ÎCD£¬AD=4£¬CD=3£¬AB=$\frac{25}{3}$£¬½«¡÷ACDÕÛÆð£¬Ê¹¶þÃæ½ÇD¡ä-AC-BΪֱ¶þÃæ½Ç£¬µÃµ½Èçͼ2ËùʾµÄ¿Õ¼ä¼¸ºÎÌåD¡ä-ABC£®

£¨1£©ÇóÖ¤£ºAD¡ä¡ÍÆ½ÃæBCD¡ä£»
£¨2£©ÇóÖ±ÏßAD¡äÓëÆ½ÃæABCËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyÓÐÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣮÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=8cos¦È£®ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÏÒ³¤|AB|=$\frac{32}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬Æ½ÃæABC¡ÍÆ½ÃæBCD£¬¡÷ABCΪÕýÈý½ÇÐΣ¬ÇÒAB=2£¬BC¡ÍCD£¬µãEΪÀâACµÄÖÐÐÄ£®
£¨1£©ÇóÖ¤£ºÆ½ÃæACD¡ÍÆ½ÃæBED£»
£¨2£©ÈôÖ±ÏßADÓëÆ½ÃæBCDËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{3}}{4}$£¬AB=3AP£¬ÊÔÇó¶þÃæ½ÇP-DE-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Í¶Àº²âÊÔÖУ¬Ã¿ÈËͶ3´Î£¬ÖÁÉÙͶÖÐ2´Î²ÅÄÜͨ¹ý²âÊÔ£®ÒÑ֪ijͬѧÿ´ÎͶÀºÍ¶ÖеĸÅÂÊΪ0.6£¬ÇÒ¸÷´ÎͶÀºÊÇ·ñͶÖÐÏ໥¶ÀÁ¢£¬Ôò¸Ãͬѧͨ¹ý²âÊԵĸÅÂÊΪ$\frac{81}{125}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©ºÍżº¯Êýg£¨x£©Âú×㣺f£¨x£©+g£¨x£©=ex£¬Ôò$\frac{{2}^{n}g£¨1£©g£¨2£©g£¨{2}^{2}£©¡­g£¨{2}^{n-1}£©}{f£¨{2}^{n}£©}$=$\frac{2e}{{e}^{2}+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸