精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足an+1=2an(n∈N*)且a2=1,则log2a2015=(  )
A.2012B.2013C.2014D.2015

分析 求出$\frac{{{a_{n+1}}}}{a_n}=2$,从而数列{an}是等比数列,由a2=1,得到${a_n}=1×{2^{n-2}}$,由此能求出结果.

解答 解:因为${a_{n+1}}=2{a_n}(n∈{N^*})$,所以$\frac{{{a_{n+1}}}}{a_n}=2$,
所以数列{an}是等比数列,
因为a2=1,所以${a_n}=1×{2^{n-2}}$,
所以${a_{2015}}=1×{2^{2015-2}}={2^{2013}}$,
所以${log_2}{a_{2015}}={log_2}{2^{2013}}=2013$.
故选:B.

点评 本题考查等比数列的第2015项的对数的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若tan2α=-$\frac{{3\sqrt{7}}}{7}$,α∈(-$\frac{π}{4}$,$\frac{π}{4}}$),则sinα+cosα等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示的几何体中,四边形ABCD是边长为$\sqrt{2}$的正方形,矩形ADD1A1所在的平面垂直于平面ABCD,且AA1=2,则该几何体ABCD-A1D1的外接球的体积是(  )
A.$\frac{{2\sqrt{2}π}}{3}$B.$\frac{{4\sqrt{2}π}}{3}$C.$2\sqrt{2}π$D.$\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当E为AB的中点时,求点E到平面ACD1的距离;
(2)当AE等于何值时,二面角D1-EC-D的大小为$\frac{π}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输入的n的值为5,则输出的S的值为(  )
A.17B.36C.52D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,使得x2+4x+6<0,则下列说法正确的是(  )
A.¬p:?x∈R,使得x2+4x+6≥0,为真命题B.¬p:?x∈R,使得x2+4x+6≥0,为假命题
C.¬p:?x∈R,使得x2+4x+6≥0,为真命题D.¬p:?x∈R,使得x2+4x+6≥0,为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有4个相同的红包,分别装有面值为5元、6元、8元和10元的纸币,任取2个红包,得到的钱数为偶数的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若双曲线mx2+y2=1(m<-1)的离心率恰好是实轴长与虚轴长的等比中项,则m=-7-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),l与C分别交于M,N,P(-2,-4).
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

同步练习册答案