如图,三棱柱的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点。
(I)求证:B1C//平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.
(1)证明见解析;(2)证明见解析.
解析试题分析:(1)由三视图还原为空间几何体的实际形状时,要从三视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体的实际形状时,一般以正视图和俯视图为主,结合侧视图进行综合考虑;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键.
试题解析:
证明:(I)由三视图可知三棱柱为直三棱柱,底面是等腰直角三角形且,
连结A1C,设。连结MO,
由题意可知A1O=CO,A1M=B1M,所以 MO//B1C.
又平面;平面,
所以平面 6分
(II),又为的中点,
平面,平面
又平面 所以平面AC1M⊥平面AA1B1B 12分
考点:(1)直线与平面平行的判定;(2)平面与平面垂直的判定.
科目:高中数学 来源: 题型:解答题
如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面ABC所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。
(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
已知两条不同直线、,两个不同平面、,给出下列命题:
①若垂直于内的两条相交直线,则⊥;
②若∥,则平行于内的所有直线;
③若,且⊥,则⊥;
④若,,则⊥;
⑤若,且∥,则∥.
其中正确命题的序号是 .(把你认为正确命题的序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com