精英家教网 > 高中数学 > 题目详情
若关于x的方程x2-2mx+m+6=0的两实根为x1,x2,y=(x1-1)2+(x2-1)2的取值范围是(  )
A、y≥
49
4
B、y≥8
C、y≥18
D、y>-
49
4
考点:根与系数的关系
专题:函数的性质及应用
分析:由方程x2-2mx+m+6=0的两实根为x1,x2,可得:△≥0,即m≤-2,或m≥3,且x1+x2=2m,x1•x2=m+6,进而可将y=(x1-1)2+(x2-1)2化为:y=4m2-6m-10(m≤-2,或m≥3)的形式,结合二次函数的图象和性质可得答案.
解答: 解:∵方程x2-2mx+m+6=0的两实根为x1,x2
∴△=4m2-4(m+6)≥0,即m≤-2,或m≥3,
且x1+x2=2m,x1•x2=m+6,
则y=(x1-1)2+(x2-1)2=(x1+x22-2x1•x2-2(x1+x2)+2=4m2-2(m+6)-4m+2=4m2-6m-10,
故当m=3时,y取最小值8,无最大值,
即y=(x1-1)2+(x2-1)2的取值范围是y≥8,
故选:B
点评:本题考查的知识点是一元二次方程根与系数的关系,二次函数的图象和性质,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列
3
2
,-
1
2
,-
5
2
,-
9
2
,…的一个通项公式是(  )
A、2n-
1
2
B、
3
2
-2n
C、
7
2
-2n
D、
3
2
+2n

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的实数a、b,定义运算“⊕”:s=a⊕b.若其运算法则如程序框图所示,则集合{y|y=(1⊕x)•x+(2⊕x),x∈[-2,2]}(注:“•”和“+”表示实数的乘法和加法运算)的最大元素是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2,3},B={1,3,4},则A∩B的子集个数为(  )
A、2B、3C、4D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<
3
3
且a≠
1
3
,讨论方程2-x=logax的解的个数及解的分布.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数f(n)=
1
n+a1
+
2
n+a2
+
3
n+a3
+…+
n
n+an
(n∈N,且n≥2)求函数f(n)的最小值;
(3)设bn=
1
an
,Sn表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2-c2=
3
bc,A=(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

点O是锐角△ABC的外心,AB=8AC=12,A=
π
3
,若
AO
=x
AB
+y
AC
,则2x+3y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点为F,过F作圆x2+y2=a2的切线,切点为E,延长FE交双曲线右支于点P,若E为PF的中点,则双曲线的离心率为(  )
A、
10
2
B、5
C、2
D、
5

查看答案和解析>>

同步练习册答案