精英家教网 > 高中数学 > 题目详情
17.已知直线l:3x+4y-12=0,l′与l垂直,且l′与两坐标轴围成的三角形面积为4,则l′的方程是$4x-3y±4\sqrt{6}=0$.

分析 设直线l′的方程为:4x-3y+m=0(m≠0).分别令x=0,y=0,可得直线l′与坐标轴的交点坐标,利用三角形面积计算公式,解得m即可得出.

解答 解:设直线l′的方程为:4x-3y+m=0(m≠0).
分别令x=0,y=0,可得直线l′与坐标轴的交点$(0,\frac{m}{3})$,$(-\frac{m}{4},0)$.
∴$\frac{1}{2}|\frac{m}{3}||-\frac{m}{4}|$=4,解得m=±4$\sqrt{6}$.
∴直线l′的方程为:$4x-3y±4\sqrt{6}=0$.
故答案为:$4x-3y±4\sqrt{6}=0$.

点评 本题考查了相互垂直的直线斜率之间的关系、三角形面积计算公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知一组样本点(xi,yi),(其中i=1,2,3,…,30),变量x与y线性相关,且根据最小二乘法求得的回归方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,则下列说法正确的是(  )
A.至少有一个样本点落在回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上
B.若$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$斜率$\stackrel{∧}{b}$>0,则变量x与y正相关
C.对所有的解释变量xi(i=1,2,3,…,30),$\stackrel{∧}{b}$xi+$\stackrel{∧}{a}$的值与yi有误差
D.若所有样本点都在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上,则变量间的相关系数为1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:$\frac{{x}^{2}+7x+9}{{x}^{2}+2x-5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(ax+1)+$\frac{2}{x+1}$-1(x≥0,a>0).
(1)求f(x)的单调区间;
(2)若函数g(x)=$\frac{1}{3}$bx3-bx,当a=1且b<0时,对于任意x1∈(0,1),总存在x2∈(0,1)使得f(x1)=g(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点M(-1,2),N(3,3),若直线l:kx-y-2k-1=0与线段MN相交,则k的取值范围是(  )
A.[4,+∞)B.(-∞,-1]C.(-∞,-1]∪[4,+∞)D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,已知圆C的方程:x2+y2-2x-4y+4=0,点P是直线l:x-2y-2=0上的任意点,过P作圆的两条切线PA,PB,切点为A、B,当∠APB取最大值时.
(Ⅰ)求点P的坐标及过点P的切线方程;
(Ⅱ)在△APB的外接圆上是否存在这样的点Q,使|OQ|=$\frac{7}{2}$(O为坐标原点),如果存在,求出Q点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设P是抛物线y=$\frac{1}{4}$x2-3上横坐标非负的一个动点,过P引圆x2+y2=2的两条切线,切点分别为T1、T2,当|T1T2|最小时,直线T1T2的方程是x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个函数中,在R上单调递增的函数是(  )
A.y=x2B.y=sinxC.y=2xD.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z∈C,若z2+|z|=0,则z=(  )
A.iB.±iC.0D.0或±i

查看答案和解析>>

同步练习册答案